聚合物基复合材料
如何解决纳米颗粒在聚合物基体中的团聚以及弱界面相互作用等问题一直是聚合物基复合材料领域的关键性难题。本课题组提出将不同维度的纳米材料进行合理杂化,从而成功实现异质、异相和不同性质的纳米基元间的高效复合与协同分散;进而将纳米杂化颗粒与聚合物基体复合,实现了纳米颗粒在聚合物基体中的均匀分散及其与基体间的强界面相互作用,从而解决了纳米颗粒在聚合物基体中的团聚和弱界面等瓶颈问题,同时实现了聚合物基体的高性能化和多功能化。 1. 纳米颗粒的高效杂化构筑 针对聚合物基复合材料中纳米颗粒易于团聚和界面相互作用弱等关键问题,课题组提出了将不同维度和(或)不同性质的纳米颗粒进行高效杂化的新方法,揭示了聚合物基复合材料的协同分散机制,实现了聚合物基复合材料的高性能化和多功能化。
2. 纳米颗粒在聚合物基体中的协同分散 针对聚合物基复合材料中纳米颗粒与聚合物基体界面相互作用弱等关键问题,课题组提出了利用纳米颗粒高效杂化构筑及界面可控组装调控复合材料界面强度的新思路,获得了界面增强的高性能/多功能一体化的聚合物基复合材料。
代表性论文: 1. Y. Wang, Y. Liu, R. Plamthottam, M. Tebyetekerwa, J. Xu, J. Zhu, C. Zhang*, T. X. Liu*. Highly stretchable and reconfigurable ionogels with unprecedented thermoplasticity and ultrafast self-healability enabled by gradient-responsive networks. Macromolecules 2021, 54, 3832. 2. B. Zhang, X. Zhang, K. Wan, J. Zhu, J. Xu, C. Zhang*, T. X. Liu*. Dense hydrogen-bonding network boosts ionic conductive hydrogels with extremely high toughness, rapid self-recovery and autonomous adhesion for human-motion detection. Research 2021, 2021, 9761625. 3. A. Wang, Y. Wang, B. Zhang, K. Wan, J. Zhu, J. Xu, C. Zhang*, T. X. Liu*. Hydrogen-bonded network enables semi-interpenetrating ionic conductive hydrogels with high stretchability and excellent fatigue resistance for capacitive/resistive bimodal sensors. Chem. Eng. J. 2021, 411, 128506. 4. Y. Wang, M. Tebyetekerwa, Y. Liu, M. Wang, J. Zhu, J. Xu, C. Zhang*, T. X. Liu*. Extremely stretchable and healable ionic conductive hydrogels fabricated by surface competitive coordination for human-motion detection. Chem. Eng. J. 2021, 420, 127637. 5. H. Song, Y. Sun, J. Zhu, J. Xu, C. Zhang*, T. X. Liu*. Hydrogen-bonded network enables polyelectrolyte complex hydrogels with high stretchability, excellent fatigue resistance and self-healability for human motion detection. Compos. Part B-Eng. 2021, 217, 108901. 6. L. Li, Y. Zhang, H. Lu, Y. Wang, J. Xu, J. Zhu, C. Zhang*, T. X. Liu*. Cryopolymerization enables anisotropic polyaniline hybrid hydrogels with superelasticity and highly deformation-tolerant electrochemical energy storage. Nat. Commun. 2020, 11, 62. 7. L. Li, L. Xu, W. Ding, H. Lu, C. Zhang*, T. X. Liu*. Molecular-engineered hybrid carbon nanofillers for thermoplastic polyurethane nanocomposites with high mechanical strength and toughness. Compos. Part B-Eng. 2019, 177, 107381. 8. M. Liu, Y. Du, Y. Miao, Q. Ding, S. He, W. W. Tjiu, J. Pan, T. X. Liu*. Anisotropic conductive films based on highly aligned polyimide fibers containing hybrid materials of graphene nanoribbons and carbon nanotubes. Nanoscale 2015, 7, 1037. 9. L. Jiang, C. Zhang, M. K. Liu, Z. Yang, W. W. Tjiu, T. X. Liu*. Simultaneous reinforcement and toughening of polyurethane composites with carbon nanotube/halloysite nanotube hybrids. Compos. Sci. Technol. 2014, 91, 98. 10. Z. Yang, M. Liu, C. Zhang, W. W. Tjiu, T. X Liu*, H. Peng*. Carbon nanotubes bridged with graphene nanoribbons and their use in high-efficiency dye-sensitized solar cells. Angew. Chem. Int. Ed. 2013, 52, 3996. 11. M. Liu, C. Zhang, W. W. Tjiu, Z. Yang, W. Wang, T. X. Liu*. One-step hybridization of graphene nanoribbons with carbon nanotubes and its strong-yet-ductile thermoplastic polyurethane composites. Polymer 2013, 54, 3124. 12. M. Liu, Y. Miao, C. Zhang, W. W. Tjiu, Z. Yang, H. Peng, T. X. Liu*. Hierarchical composites of polyaniline-graphene nanoribbons-carbon nanotubes as electrode materials in all-solid-state supercapacitors. Nanoscale 2013, 5, 7312. 13. C. Zhang, S. Huang, W. W. Tjiu, W. Fan, T. X. Liu*. Facile preparation of water-dispersible graphene sheets stabilized by acid-treated multi-walled carbon nanotubes and their poly(vinyl alcohol) composites. J. Mater. Chem. 2012, 22, 2427. 14. C. Zhang, W. W. Tjiu, W. Fan, Z. Yang, S. Huang, T. X. Liu*. Aqueous stabilization of graphene sheets using exfoliated montmorillonite nanoplatelets for multifunctional free-standing hybrid films via vacuum-assisted self-assembly. J. Mater. Chem. 2011, 21, 18011. 15. C. Zhang, W. W. Tjiu, T. X. Liu*, W. Y. Lui, I. Y. Phang, W.-D. Zhang*. Dramatically enhanced mechanical performance of nylon-6 magnetic composites with nanostructured hybrid one-dimensional carbon nanotube-two-dimensional clay nanoplatelet heterostructures. J. Phys. Chem. B 2011, 115, 3392. 16. C. Zhang, L. L. Ren, X. Y. Wang, T. X. Liu*. Graphene oxide-assisted dispersion of pristine multiwalled carbon nanotubes in aqueous media. J. Phys. Chem. C 2010, 114, 11435. 17. S. Huang, H. D. Peng, W. W. Tjiu, Z. Yang, H. Zhu, T. Tang, T. X. Liu*. Assembling exfoliated layered double hydroxide (LDH) nanosheet/carbon nanotube (CNT) hybrids via electrostatic force and fabricating nylon nanocomposites. J. Phys. Chem. B 2010, 114, 16766. 18. D. Chen, X. Wang, T. X. Liu*, X. Wang, J. Li. Electrically conductive poly(vinyl alcohol) hybrid films containing graphene and layered double hydroxide fabricated via layer-by-layer self-assembly. ACS Appl. Mater. Interfaces 2010, 2, 2005. 19. S. Huang, X. Cen, H. Peng, S. Guo, W. Wang, T. X. Liu*. Heterogeneous ultrathin films of poly(vinyl alcohol)/layered double hydroxide and montmorillonite nanosheets via layer-by-layer assembly. J. Phys. Chem. B 2009, 113, 15225. 20. W. D. Zhang*, I. Y. Phang, T. X. Liu*. Growth of carbon nanotubes on clay: Unique nanostructured filler for high-performance polymer nanocomposites. Adv. Mater. 2006, 18, 73.
|