

Strain-Regulated Pd/Cu Core/Shell Icosahedra for Tunable Syngas Electrosynthesis from CO₂

Hanjun Li, Nan Zhang,* Shuxing Bai, Longsheng Zhang, Feili Lai, Yao Chen, Xiangmiao Zhu, and Tianxi Liu*

INTRODUCTION

Using CO_2 as a potential carbon source to obtain high-value chemical products through electrochemical catalysis is an ideal strategy of CO₂ conversion, which can directly convert CO₂ into diverse energy materials, thus closing the man-made carbon cycle.^{1–4} At present, most of the research on the CO_2 reduction reaction (CO_2RR) is mainly to pursue high Faradaic efficiency (FE) and yield of products such as methane, methanol, formate, and multi-carbon products.⁵⁻⁷ Therefore, it is significant to develop high-performance electrocatalysts for the CO2RR and suppress the side reaction of the hydrogen evolution reaction (HER), which is generally performed under cathodic conditions in an aqueous electrolyte.^{8,9} Although significant efforts have been made to prohibit the HER by designing electrocatalysts, the low selectivity of the CO₂RR remains a key challenge.

In addition to inhibiting the HER, making full use of the products of the HER and CO₂RR, combining these two products to obtain syngas (H₂ and CO) is an alternative and effective method to convert CO_2 .^{10–12} The produced syngas with a tunable composition is readily used to produce valuable chemicals for the Fischer-Tropsch, methanol synthesis reactions and so on.^{13–15} With regard to these thermochemical processes, the product selectivity is mainly determined by the molar ratio of H_2/CO .^{16–18} Therefore, controlling the composition of syngas will provide universality for the use of H₂ and CO in electrocatalytic methods. However, achieving high CO₂RR activity while maintaining a tunable composition of syngas within the ideal range during the thermochemical process is not an easy task.

As we all know, palladium (Pd) has superior catalytic activity for the HER, but it was considered to be unsuitable for CO production during the CO₂RR due to its strong CO binding.¹⁹⁻²¹ Icosahedra (ico), a kind of multiple-twinned nanoparticles, have demonstrated excellent catalytic performance in many different reactions.²² In addition, modifying the catalyst surface with foreign metals can provide more possibilities for regulating the activity and selectivity of the $CO_2RR_1^{23-25}$ which is attributed to the fact that the strain effects introduced by the metal shell optimizes the binding energy of the intermediates in the CO₂RR.^{26,27} Above all, introducing the metal overlayers onto the Pd ico would optimize the strain effect of the catalyst, which has the potential to control the types of products in the CO₂RR. However, introducing a metal layer on the strained Pd ico surface has rarely been reported in the CO₂RR to syngas.

EXPERIMENTAL SECTION

Materials. Palladium(II) acetylacetonate [Pd(acac)₂, 99%], sodium tetrachloropalladate (Na₂PdCl₄, 99.9%), ammonium bromide (NH_4Br) , polyvinyl pyrrolidone $[(C_6H_9NO)n, PVP, molecular weight$ = 58,000], and copper formate [Cu(COOH)₂] were obtained from Sigma-Aldrich. Ethanol (C₂H₆O, ≥99.7%), N,N-dimethylformamide

Received: June 27, 2022 **Revised:** August 9, 2022 Published: August 19, 2022

Figure 1. Synthesis and structural characterization of $Pd_{2,2}Cu$ core/shell ico. (a) Schematic illustration of the synthesis of $Pd_{2,2}Cu$ ico. (b,e) TEM images and (c,f) their corresponding HRTEM images of one typical Pd ico and $Pd_{2,2}Cu$ ico. (d,g) Integrated pixel intensities and interplanar spacings of Pd {111} lattices of Pd ico and $Pd_{2,2}Cu$ ico. (h) PXRD patterns of Pd ico and $Pd_{2,2}Cu$ ico. (i) EDS elemental mappings and (j) line-scan profile across the $Pd_{2,2}Cu$ ico marked by the right arrow in the inset.

 (C_3H_7NO, DMF) , acetone $(C_3H_6O, \ge 99.7\%)$, formic acid aqueous solution (HCOOH, $\ge 85\%$), sodium iodide (NaI, 99.0%), and ethylene glycol (EG) ($C_2H_6O_2$, EG, $\ge 99.0\%$) were obtained from Sinopharm Chemical Reagent Co. Ltd (Shanghai, China). Molybdenum hexacarbonyl [Mo(CO)₆, 98%, Strem Chemicals] and ascorbic acid

 $(C_6H_8O_6,$ AA, 99%, J&K China Chemical Ltd) were used as received. The water (18 M Ω/cm) used in all electrolyte solutions was obtained using an ultra-pure purification system.

Preparation of Pd Ico. Pd(acac)₂ (7.4 mg), NH₄Br (15 mg), and PVP (50 mg) were dissolved in 10 mL of DMF. The mixture was further

Figure 2. CO_2RR performances of Pd ico/C and Pd_{2.2}Cu ico/C. (a) Schematic diagram of the CO_2RR setup. (b) FEs of main reduction products (H₂ and CO) at varied applied potentials of Pd ico/C and Pd_{2.2}Cu ico/C. (c) Potential-dependent CO partial current densities of two different catalysts. (d) Molar ratio of H₂/CO by Pd_{2.2}Cu ico/C at different potentials. (e) Time-dependent current density over Pd_{2.2}Cu ico/C at -1.3 V_{RHE}.

heated to 180 $^{\circ}\mathrm{C}$ for 2 h in an oil bath to obtain Pd ico, which were collected by centrifugation and washed with ethanol and acetone.

The mixture of Na₂PdCl₄ (7.4 mg), HCOOH (0.5 mL), PVP (20 mg), NaI (5 mg), and DMF (10 mL) and the mixture of Pd(acac)₂ (7.4 mg), HCOOH (0.1 mL), PVP (100 mg), Mo(CO)₆ (1 mg), and DMF (10 mL) were heated to 120 °C for 5 h in an oil bath to prepare Pd nanocubes and tetrahedra, respectively.

Preparation of Pd_{6.1}Cu Ico, Pd_{4.3}Cu Ico, and Pd_{2.2}Cu Ico. As for Pd_{6.1}Cu ico, Pd ico (0.5 mg) were dispersed in EG (4 mL) into a vial, then Cu(COOH)₂ (0.6 mg) and AA (18.8 mg) were added into the vial. The mixture was ultrasonicated for around 5 min. The other conditions (reaction temperature and time) of Pd_{6.1}Cu ico were the same as those for the Pd ico. The preparation of Pd_{4.3}Cu ico and Pd_{2.2}Cu ico was similar to that of Pd_{6.1}Cu ico except that the amount of Cu(COOH)₂ was increased to 1.2 and 2.4 mg, respectively. The preparation of Pd_{2.2}Cu ico except for the change of Pd ico.

Characterizations. Transmission electron microscopy (TEM) images were collected using a JEM-2100plus transmission electron microscope at 120 kV. High-resolution TEM (HRTEM) and scanning transmission electron microscopy (STEM) images were captured using an FEI Tecnai F20 transmission electron microscope at 200 kV. SEM– energy-dispersive X-ray spectroscopy (EDS) was performed using a HITACHI S-4800 at 30 kV. Powder X-ray diffraction (PXRD) patterns were collected using a Philips X'Pert Pro Super diffractometer with Cu K α radiation ($\lambda = 0.15406$ nm). X-ray photoelectron spectroscopy (XPS) spectra were obtained using a Kratos AXIS SUPRA⁺ spectrometer equipped with a monochromatic Al K α X-ray source operating at 600 W. ¹H nuclear magnetic resonance (¹H NMR) spectra were obtained using a 400 MHz NMR spectroscope (AVANCE III HD).

Electrochemical Measurements. The electrochemical measurements of the CO_2RR were conducted in a closed H-type electrolytic cell using a CHI 660e separated from the Nafion membrane. The Pd-based ico catalysts were dispersed in a mixture containing isopropanol and

Nafion (5%) to form a 0.50 mg_{Pd}/mL dispersion. A 40 μ L dispersion of Pd ico/C, Pd_{6.1}Cu ico/C, Pd_{4.3}Cu ico/C, and Pd_{2.2}Cu ico/C was deposited on a right angle glassy carbon electrode to obtain the working electrodes (WEs).

As for CO stripping measurements, the three-electrode system was also applied for CO stripping measurements at room temperature. First, the electrode was immersed in CO-saturated 0.1 M HClO₄ for around 15 min. Then, the electrode was quickly moved into a fresh 0.1 M HClO₄ solution. Finally, CO stripping curves were obtained by performing sweep cyclic voltammetry for two cycles at 20 mV s⁻¹.

As for the CO₂RR, the electrolyte is 0.1 M KHCO₃ solution. Highpurity CO₂ (20 sccm) (99.99%) was purged into 10 mL of 0.1 M KHCO₃ in the cathode compartment for 15 min. The gaseous products were quantified using a gas chromatography system. The liquid products were characterized and quantified by ¹H NMR.

RESULTS AND DISCUSSION

Herein, we report the monodisperse Pd/Cu core/shell ico for the first time, which are demonstrated to promote tunable syngas production via the CO₂RR and feature a tensile-strained Cu overlayer on Pd ico. The composition of Pd/Cu can be easily tuned from 2.2 to 4.3 and 6.1, which is closely related to the performance of syngas electrosynthesis from CO₂. Particularly, the Pd/Cu core/shell ico with different compositions enable tunable molar ratios of H₂/CO from 1/1 to 2/1 and 3/1, outperforming most of the reported catalysts for syngas electrosynthesis.²⁸ The mechanistic discussion suggests that the tensile-strained Cu shell may strengthen the binding of CO₂ and decrease the adsorption of CO, favoring the tunable syngas production.

The fabrication process of Pd/Cu core/shell ico is shown in Figure 1a. First, monodisperse, uniform, and high-yield Pd ico were prepared through a hydrothermal method (Figure S1a). Then, Pd ico were dispersed in EG to mix with $Cu(COOH)_2$ and ascorbic acid (AA). Cu(COOH)₂ was then reduced and precipitated on Pd ico seeds, resulting in the formation of Pd/Cu core/shell ico.²⁹ The high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) and TEM were first employed to investigate the morphology and structure of Pd/Cu core/shell ico (feed ratio of Pd and Cu = 2.5:1). The Pd/Cu ico are fairly uniform in terms of size without any irregular nanoparticles (Figure S1b). According to the particle size distribution of the Pd/Cu ico and Pd ico (Figure S1c,d), the average size of the Pd/Cu ico is around 23.9 nm, which is slightly larger than that of the Pd ico seeds (23.4 nm), indicating that Cu has been successfully epitaxially grown on the Pd ico seed surface. The molar ratio of Pd and Cu was 2.2/1, as determined by EDS (Figure S2a), so that the sample was defined as $Pd_{2,2}Cu$ ico. The molar ratio of Pd/Cu on the Pd_{2.2}Cu ico surface was further evaluated to be 54.5/45.5 by XPS, revealing that Cu was mainly distributed on the Pd_{2.2}Cu ico surface (Figure S2b,c). As shown in the TEM image of the one typical Pd ico and Pd_{2.2}Cu ico (Figure 1b,e), it can be clearly seen that they both have obvious twin boundaries. Furthermore, as both Pd ico and $Pd_{2,2}Cu$ ico are enclosed by {111} facets, their lattice spacings of {111} planes were compared by HRTEM. As for Pd ico (Figure 1c,d), the lattice spacing of {111} planes is 0.233 nm, slightly larger than that of the single-crystalline bulk, proving that the tensile strain exists on Pd ico.³⁰ With regard to Pd_{2.2}Cu ico (Figure 1f,g), the measured lattice spacing is 0.225 nm, which is slightly smaller than that of Pd ico, indicating the existence of compressive strain after the induction of the Cu shell on Pd ico.

In order to clarify the difference between the crystal phase structures of Pd ico and $Pd_{2,2}Cu$ ico, PXRD was also conducted

(Figure 1h). According to their PXRD patterns, it can be seen that both the samples correspond to face-centered cubic (fcc) Pd, while the Cu shell of $Pd_{2,2}Cu$ ico is thin enough to be observed. However, there is a clear difference in the peak positions between the two samples. Particularly, the main diffraction peaks of Pd ico shifted to lower angles compared to the standard card of Pd, while those of Pd_{2,2}Cu ico shifted toward higher angles than those for Pd ico, demonstrating the smaller lattice constant of Pd_{2.2}Cu ico. Specifically, due to the twin structure, the lattice constant of Pd ico became larger. As for the Pd_{2.2}Cu ico, owing to the smaller atomic radius of Cu, the tensile-strained Cu overlayer resulted in a smaller lattice spacing of the Pd core, which is consistent with HRTEM results.³¹ In addition, the EDS elemental mappings of Pd_{2.2}Cu ico show that Pd is concentrated in the interior of the ico, while Cu is distributed on the surface of Pd (Figure 1i). The line-scan analysis shown in Figure 1j reveals that Cu is mainly outside the Pd core. Taken together, due to the difference in the atomic radius of Pd and Cu, the surface Cu shell is subjected to tensile strain by the larger Pd atoms in the Pd core, while the smaller Cu exerts compressive strain on the inner Pd core. In a word, there is tensile strain in the Cu shell, while compressive strain exists in the Pd core.

Before the electrocatalytic experiments, the two different $Pd_{2,2}Cu$ ico and Pd ico were first loaded on commercial carbon (Vulcan XC72R carbon, C) *via* sonication (Figure S3). CO₂RR performance of Pd-based ico/C was further evaluated for constant-potential electrolysis. As shown in Figure 2a, the catalyst-coated glass carbon electrode was used as the WE, a Ag/AgCl electrode was used as the reference electrode (RE), and a carbon rod was used as the counter electrode (CE). The WE and RE were placed in the cathode compartment, while the CE was in anode compartment. CO₂ was continuously passed through the catholyte (0.1 M KHCO₃), and the gas production was connected to a gas chromatograph. All potentials were calibrated to the reversible hydrogen electrode (RHE) (Figure S4).

Chrono-amperometry results of Pd ico/C and Pd_{2.2}Cu ico/C at different potentials are shown in Figure S5. According to the results of gas chromatography, H₂ and CO are the main products of Pd ico and Pd_{2.2}Cu ico/C. The ¹H NMR spectrum of Pd_{2.2}Cu ico/C at $-1.2 V_{RHE}$ shows that the remaining product is formic acid (Figure S6). In addition, Figure 2b shows FEs of both H_2 and CO under different applied potentials. Compared with Pd ico/C, Pd_{2.2}Cu ico/C exhibits more CO yields for all the applied potentials. The partial current densities of CO (j_{CO}) on Pd ico/ C and Pd_{2.2}Cu ico/C are shown in Figure 2c. Pd_{2.2}Cu ico/C exhibits higher j_{CO} than Pd ico/C at all applied potentials. The molar ratios of H_2/CO at different potentials by Pd ico/C and $Pd_{2,2}Cu$ ico/C are shown in Figures S7 and 2d. It is obvious that the molar ratio of H_2/CO at all applied potentials by $Pd_{2,2}Cu$ ico/C is between 1.0 and 2.0. Particularly, at both -1.2 and -1.3 V_{RHE} , the molar ratio of H_2/CO by $Pd_{2,2}Cu$ ico/C is around 1.0, which would be readily used in the hydroformylation process. In sharp contrast to these results, the molar ratios of H_2/CO by Pd ico/C at all applied potentials are all greater than 4.0, which does not meet the ratio of syngas. Finally, the long-term stabilities of $Pd_{2,2}Cu$ ico/C were also investigated using chronoamperometry at $-1.3 V_{RHE}$. As shown in Figure 2e, the current density change of Pd_{2.2}Cu ico/C is not significant, and the molar ratios of $H_2/$ CO are maintained at around 1.0 during the 10 h stability test. Furthermore, the structure, composition, and surface tensile strain of Pd_{2.2}Cu ico/C could largely be maintained after the durability test (Figure S8). In addition, Pd 3d and Cu 2p spectra

Figure 3. CO_2RR performance of $Pd_{6.1}Cu$ ico/C and $Pd_{4.3}Cu$ ico/C. (a,c) Chrono-amperometry results, (b,d) FEs of H_2 and CO by $Pd_{6.1}Cu$ ico/C and $Pd_{4.3}Cu$ ico/C. (e) Molar ratio of H_2/CO by $Pd_{2.2}Cu$ ico/C, $Pd_{4.3}Cu$ ico/C, and $Pd_{6.1}Cu$ ico/C at applied potentials.

of $Pd_{2,2}Cu$ ico/C show that the two elements exist stably after the durability test (Figure S9). Therefore, $Pd_{2,2}Cu$ ico would serve as promising catalysts for persistently producing syngas during the CO_2 reduction process.

Encouraged by these results, the monodisperse $Pd_{6.1}Cu$ ico and $Pd_{4.3}Cu$ ico were obtained by decreasing the Cu content with other synthesis conditions kept the same as those for $Pd_{2.2}Cu$ ico (Figure S10a,b) and the average particle sizes of the ico products of about 23.5 and 23.8 nm, respectively (Figure S10c,d). In addition, their atomic ratios were revealed by SEM– EDS, as shown in Figure S10e,f. PXRD peaks of $Pd_{6.1}Cu$ ico and $Pd_{4.3}Cu$ ico are slightly shifted to a higher angle compared to that of Pd ico (Figure S11), indicating that the strain intensity can be optimized by changing the amount of Cu. If the amount of Cu(COOH)₂ was further increased to 3.6 mg [Pd(acac)₂/Cu(COOH)₂ = 1.5], the product is mainly composed of irregular particles (Figure S12a). In addition, the PXRD pattern shows two phases: Pd and Cu (Figure S12b). The results mentioned above reveal that if the amount of Cu is further increased, the Pd/Cu core/shell structure cannot be obtained.

The CO₂RR performances of the two catalysts with different strain intensities were further studied in the same condition as that for Pd_{2.2}Cu ico/C. The Pd_{6.1}Cu ico and Pd_{4.3}Cu ico were loaded evenly on the carbon support (Figure S13). The chrono-amperometry results for Pd_{6.1}Cu ico/C and Pd_{4.3}Cu ico/C at different potentials are shown in Figure 3a,c. The FEs of H₂ and

Figure 4. (a) CO stripping curves, (b) Pd 3d spectra, (c) valence band spectra, and (d) CO_2 -TPD profiles for Pd ico/C and three different Pd/Cu core/shell ico/C catalysts. (e) Illustrations of the adsorption of reactants and products on Pd ico and Pd/Cu core/shell ico during the electrochemical CO₂RR.

CO at corresponding potentials for $Pd_{6.1}Cu$ ico/C and $Pd_{4.3}Cu$ ico/C are shown in Figure 3b,d. It is pertinent that the main products in the CO₂RR by the two different catalysts are CO and H_2 at all applied potentials. Moreover, the introduction of Cu enhances the FE_{CO} of Pd ico in the CO₂RR, and FE_{CO} increases with the increase of the Cu content. As shown in Figure 3e, $Pd_{6.1}Cu$ ico/C and $Pd_{4.3}Cu$ ico/C can be implemented such that the molar ratio of H_2/CO in syngas ranges around 3:1 to 2:1. Especially, the developed Pd/Cu ico electrocatalysts enable a

tunable molar ratio of H_2/CO , ranging from 1/1 to 2/1 and 3/1 at both -1.2 and -1.3 V_{RHE} for Pd_{2.2}Cu ico/C, Pd_{4.3}Cu ico/C, and Pd_{6.1}Cu ico/C, respectively. Beyond that, in order to illustrate the important role of Pd ico seeds with a twin structure on the syngas production, Pd/Cu core/shell nanocubes and tetrahedra were prepared by using Pd nanocubes and tetrahedra as seeds, respectively (Figures S14 and S15). Compared with that for Pd/Cu ico/C, the yield of H₂ is much higher than the yield of CO by the two different catalysts during the CO₂RR

(Figures S16 and S17), far from the proportion of syngas, further highlighting the key role of twinned Pd ico in regulating the adsorption energy of the intermediate.

To further investigate the tolerance ability of *CO intermediates during the CO₂RR after the induction of Cu, CO stripping experiments of the four different ico/C catalysts were carried out. As shown in Figure 4a, the position of the *CO oxidation peaks of Pd_{2.2}Cu ico/C is 1.40 V_{RHE}, which is lower than those of $Pd_{4,3}Cu$ ico/C (1.43 V_{RHE}), $Pd_{6,1}Cu$ ico/C (1.46 V_{RHE}), and Pd ico/C (1.50 V_{RHE}), revealing that the induction of Cu would weaken the adsorption energy of *CO.³² Moreover, XPS was also conducted to decode their electronic structures (Figures 4b, S2b,c, and S18). Figure 4b shows the Pd 3d spectra of the four different catalysts. As we can see, Pd $3d_{3/2}$ binding energies of the different catalysts decrease gradually with the increase of the Cu content, indicating that electron transfer occurred between Pd and Cu.^{33,34} Therefore, the Cu shell of the Pd/Cu core/shell ico could improve the tolerance ability of *CO intermediates, thereby accelerating the CO₂ reduction kinetics. In addition, as show in the Nyquist plot (Figure S19), $Pd_{2,2}Cu$ ico/C has a smaller charge transfer resistance than Pd ico/C, indicating its faster charge transfer process in CO₂ reduction.

Furthermore, to evaluate the binding strength of intermediates on the Pd/Cu core/shell ico, the d-band center with respect to $E - E_{\rm F}$ was measured.³⁵ Figure 4c shows that the d-band centers of Pd/Cu core/shell ico shift upward with the increasing Cu content, likely enhancing the adsorption of intermediates during the CO₂RR.³⁶ In addition, CO₂ temperature-programed desorption (CO2-TPD) was conducted to further study the adsorption of CO2. As shown in Figure 4d, the chemical desorption temperature of $Pd_{2,2}Cu$ ico/C (466.1 °C) is higher than those of $Pd_{4,3}Cu$ ico/C (431.5 °C), $Pd_{6,1}Cu$ ico/C (425.8 $^{\circ}$ C), and Pd ico/C (418.7 $^{\circ}$ C). It can be clearly observed that the temperature of CO₂ desorption increases with the increase of Cu content, suggesting that the Cu shell on Pd ico remarkably improves the chemisorption ability of CO₂.³⁷ Above all, the tensile-strained Cu shell enhances the binding of CO₂ and decreases the adsorption of CO, favoring syngas production with tunable compositions (Figure 4e).

CONCLUSIONS

In summary, a new class of Pd/Cu core/shell ico for efficient syngas with tunable compositions from the CO_2RR have been prepared for the first time. With the increase of Cu content in Pd/Cu core/shell ico, the FE_{CO} increased. By tuning the composition of Pd/Cu from 2.2 to 4.3 and 6.1, the syngas compositions on Pd/Cu core/shell ico/C are tunable from 1/1 to 2/1 and 3/1, respectively, for H₂/CO. The mechanistic discussion implies that the tunable syngas production on Pd/Cu core/shell ico/C during the CO₂RR originated from the tensile-strained Cu shell, which synergistically optimizes the adsorption energy, surface electronic structure, and catalytic performance for the CO_2RR . This work not only brings forward a strategy for tunable syngas production but also provides a new idea for the design of high-performance electrocatalysts.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acs.chemmater.2c01917.

TEM images, size distributions, SEM–EDS spectra, XPS spectra, PXRD patterns, chronoamperometry results, 1H NMR and EIS spectra of Pd/Cu core/shell ico; TEM image, SEM–EDS spectrum, and HRTEM image of Pd_{2.2}Cu ico after the durability test; and TEM images, PXRD patterns, and CO₂RR performances of Pd ico and Pd/Cu core/shell nanocubes and tetrahedra (PDF)

AUTHOR INFORMATION

Corresponding Authors

- Nan Zhang Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, International Joint Research Laboratory for Nano Energy Composites, Jiangnan University, Wuxi 214122, China; orcid.org/0000-0002-2177-0544; Email: nzhang@jiangnan.edu.cn
- Tianxi Liu Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, International Joint Research Laboratory for Nano Energy Composites, Jiangnan University, Wuxi 214122, China; Email: txliu@jiangnan.edu.cn

Authors

- Hanjun Li Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, International Joint Research Laboratory for Nano Energy Composites, Jiangnan University, Wuxi 214122, China
- Shuxing Bai College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, China; Ocid.org/ 0000-0003-0767-2603
- Longsheng Zhang Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, International Joint Research Laboratory for Nano Energy Composites, Jiangnan University, Wuxi 214122, China
- Feili Lai Department of Chemistry, KU Leuven, Leuven 3001, Belgium; orcid.org/0000-0002-4945-0737
- Yao Chen Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, International Joint Research Laboratory for Nano Energy Composites, Jiangnan University, Wuxi 214122, China
- Xiangmiao Zhu Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, International Joint Research Laboratory for Nano Energy Composites, Jiangnan University, Wuxi 214122, China

Complete contact information is available at: https://pubs.acs.org/10.1021/acs.chemmater.2c01917

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

This work was financially supported by the National Natural Science Foundation of China (NSFC) (grant no. 22105087) and Natural Science Foundation of Jiangsu Province (grant no. BK20210446). The authors thank the Central Laboratory, School of Chemical and Material Engineering, Jiangnan University.

REFERENCES

(1) Zhu, D. D.; Liu, J. L.; Qiao, S. Z. Recent Advances in Inorganic Heterogeneous Electrocatalysts for Reduction of Carbon Dioxide. *Adv. Mater.* **2016**, *28*, 3423–3452.

(2) Han, N.; Ding, P.; He, L.; Li, Y.; Li, Y. Promises of Main Group Metal–Based Nanostructured Materials for Electrochemical CO₂ Reduction to Formate. *Adv. Energy Mater.* **2019**, *10*, 1902338.

(3) Gu, Z.; Shen, H.; Chen, Z.; Yang, Y.; Yang, C.; Ji, Y.; Wang, Y.; Zhu, C.; Liu, J.; Li, J.; Sham, T. K.; Xu, X.; Zheng, G. Efficient Electrocatalytic CO_2 Reduction to C_{2+} Alcohols at Defect-Site-Rich Cu Surface. *Joule* **2021**, *5*, 429–440.

(4) Nitopi, S.; Bertheussen, E.; Scott, S. B.; Liu, X.; Engstfeld, A. K.; Horch, S.; Seger, B.; Stephens, I. E. L.; Chan, K.; Hahn, C.; Nørskov, J. K.; Jaramillo, T. F.; Chorkendorff, I. Progress and Perspectives of Electrochemical CO_2 Reduction on Copper in Aqueous Electrolyte. *Chem. Rev.* **2019**, *119*, 7610–7672.

(5) Cheng, H.; Liu, S.; Zhang, J.; Zhou, T.; Zhang, N.; Zheng, X. S.; Chu, W.; Hu, Z.; Wu, C.; Xie, Y. Surface Nitrogen-Injection Engineering for High Formation Rate of CO_2 Reduction to Formate. *Nano Lett.* **2020**, *20*, 6097–6103.

(6) Yin, P. F.; Fu, J.; Yun, Q.; Chen, B.; Liu, G.; Li, L.; Huang, Z.; Ge, Y.; Zhang, H. Preparation of Amorphous SnO₂-Encapsulated Multiphased Crystalline Cu Heterostructures for Highly Efficient CO₂ Reduction. *Adv. Mater.* **2022**, *34*, 2201114.

(7) Han, N.; Sun, M.; Zhou, Y.; Xu, J.; Cheng, C.; Zhou, R.; Zhang, L.; Luo, J.; Huang, B.; Li, Y. Alloyed Palladium-Silver Nanowires Enabling Ultrastable Carbon Dioxide Reduction to Formate. *Adv. Mater.* **2021**, 33, 2005821.

(8) Li, H.; Wen, P.; Itanze, D. S.; Hood, Z. D.; Ma, X.; Kim, M.; Adhikari, S.; Lu, C.; Dun, C.; Chi, M.; Qiu, Y.; Geyer, S. M. Colloidal Silver Diphosphide (AgP₂) Nanocrystals as Low Overpotential Catalysts for CO_2 Reduction to Tunable Syngas. *Nat. Commun.* **2019**, *10*, 5724.

(9) Peng, C.; Xu, Z.; Luo, G.; Yan, S.; Zhang, J.; Li, S.; Chen, Y.; Chang, L. Y.; Wang, Z.; Sham, T. K.; Zheng, G. Highly-Exposed Single-Interlayered Cu Edges Enable High-Rate CO₂-to-CH₄ Electrosynthesis. *Adv. Energy Mater.* **2022**, *12*, 2200195.

(10) Li, H.; Xiao, N.; Wang, Y.; Li, C.; Ye, X.; Guo, Z.; Pan, X.; Liu, C.; Bai, J.; Xiao, J.; Zhang, X.; Zhao, S.; Qiu, J. Nitrogen-Doped Tubular Carbon Foam Electrodes for Efficient Electroreduction of CO₂ to Syngas with Potential-Independent CO/H₂ Ratios. *J. Mater. Chem. A* **2019**, 7, 18852–18860.

(11) Shen, C.; Wang, P.; Li, L.; Huang, X.; Shao, Q. Phase and Structure Modulating of Bimetallic Cu/In Nanoparticles Realizes Efficient Electrosynthesis of Syngas with Wide CO/H_2 Ratios. *Nano Res.* **2021**, *15*, 528–534.

(12) Lu, S.; Shi, Y.; Meng, N.; Lu, S.; Yu, Y.; Zhang, B. Electrosynthesis of Syngas via the Co-Reduction of CO_2 and H_2O . *Cell Rep. Phys. Sci.* **2020**, *1*, 100237.

(13) He, Q.; Liu, D.; Lee, J. H.; Liu, Y.; Xie, Z.; Hwang, S.; Kattel, S.; Song, L.; Chen, J. G. Electrochemical Conversion of CO_2 to Syngas with Controllable CO/H_2 Ratios over Co and Ni Single-Atom Catalysts. *Angew. Chem., Int. Ed.* **2020**, *59*, 3033–3037.

(14) Hoffman, Z. B.; Gray, T. S.; Moraveck, K. B.; Gunnoe, T. B.; Zangari, G. Electrochemical Reduction of Carbon Dioxide to Syngas and Formate at Dendritic Copper-Indium Electrocatalysts. *ACS Catal.* **2017**, *7*, 5381–5390.

(15) Huang, M.; Kong, X.; Wang, C.; Geng, Z.; Zeng, J.; Bao, J. Synthesis of Tunable Syngas on Cobalt-Based Catalysts towards Carbon Dioxide Reduction. *ChemNanoMat* **2020**, *7*, 2–6.

(16) Daiyan, R.; Chen, R.; Kumar, P.; Bedford, N. M.; Qu, J.; Cairney, J. M.; Lu, X.; Amal, R. Tunable Syngas Production through CO₂ Electroreduction on Cobalt-Carbon Composite Electrocatalyst. *ACS Appl. Mater. Interfaces* **2020**, *12*, 9307–9315.

(17) Xie, H.; Chen, S.; Ma, F.; Liang, J.; Miao, Z.; Wang, T.; Wang, H. L.; Huang, Y.; Li, Q. Boosting Tunable Syngas Formation via Electrochemical CO_2 Reduction on Cu/In_2O_3 Core/Shell Nano-particles. *ACS Appl. Mater. Interfaces* **2018**, *10*, 36996–37004.

(18) Xu, J.; Li, X.; Liu, W.; Sun, Y.; Ju, Z.; Yao, T.; Wang, C.; Ju, H.; Zhu, J.; Wei, S.; Xie, Y. Carbon Dioxide Electroreduction into Syngas Boosted by a Partially Delocalized Charge in Molybdenum Sulfide Selenide Alloy Monolayers. *Angew. Chem., Int. Ed.* **2017**, *56*, 9121– 9125.

(19) Tackett, B. M.; Lee, J. H.; Chen, J. G. Electrochemical Conversion of CO_2 to Syngas with Palladium-Based Electrocatalysts. *Acc. Chem. Res.* **2020**, *53*, 1535–1544.

(20) Xu, L.; Wang, X.; Ma, T.; Zhao, X. Seed-Mediated Growth of Au Core-Pd Shell-Structured Nanoparticles on a Polymer Nanofibrous Mat as a Highly Active Photocatalytic Composite Material. *Compos. Commun.* **2020**, *21*, 100406.

(21) Ge, J.; Wei, P.; Wu, G.; Liu, Y.; Yuan, T.; Li, Z.; Qu, Y.; Wu, Y.; Li, H.; Zhuang, Z.; Hong, X.; Li, Y. Ultrathin Palladium Nanomesh for Electrocatalysis. *Angew. Chem., Int. Ed.* **2018**, *57*, 3435–3438.

(22) Li, X.; Li, X.; Liu, C.; Huang, H.; Gao, P.; Ahmad, F.; Luo, L.; Ye, Y.; Geng, Z.; Wang, G.; Si, R.; Ma, C.; Yang, J.; Zeng, J. Atomic-Level Construction of Tensile-Strained PdFe Alloy Surface toward Highly Efficient Oxygen Reduction Electrocatalysis. *Nano Lett.* **2020**, *20*, 1403–1409.

(23) Zhang, F. Y.; Sheng, T.; Tian, N.; Liu, L.; Xiao, C.; Lu, B. A.; Xu, B. B.; Zhou, Z. Y.; Sun, S. G. Cu Overlayers on Tetrahexahedral Pd Nanocrystals with High-Index Facets for CO_2 Electroreduction to Alcohols. *Chem. Commun.* **2017**, *53*, 8085–8088.

(24) Lan, Y.; Niu, G.; Wang, F.; Cui, D.; Hu, Z. SnO₂-Modified Two-Dimensional CuO for Enhanced Electrochemical Reduction of CO_2 to C_2H_4 . ACS Appl. Mater. Interfaces **2020**, 12, 36128–36136.

(25) Zhang, W.; Qin, Q.; Dai, L.; Qin, R.; Zhao, X.; Chen, X.; Ou, D.; Chen, J.; Chuong, T. T.; Wu, B.; Zheng, N. Electrochemical Reduction of Carbon Dioxide to Methanol on Hierarchical Pd/SnO_2 Nanosheets with Abundant Pd-O-Sn Interfaces. *Angew. Chem., Int. Ed.* **2018**, *57*, 9475–9479.

(26) Qin, B.; Li, Y.; Fu, H.; Wang, H.; Chen, S.; Liu, Z.; Peng, F. Electrochemical Reduction of CO_2 into Tunable Syngas Production by Regulating the Crystal Facets of Earth-Abundant Zn Catalyst. *ACS Appl. Mater. Interfaces* **2018**, *10*, 20530–20539.

(27) Peng, W.; Jin, J.; Yang, S.; Shen, Z.; Wang, H.; Zhang, J.; Li, G. Hollow Co₉S₈ Spheres-Derived Polyhedrons Uniformly Anchored on N, S-doped Graphene for Efficient Oxygen Electrocatalysts. *Compos. Commun.* **2021**, *23*, 100587.

(28) Guo, S.; Zhao, S.; Wu, X.; Li, H.; Zhou, Y.; Zhu, C.; Yang, N.; Jiang, X.; Gao, J.; Bai, L.; Liu, Y.; Lifshitz, Y.; Lee, S. T.; Kang, Z. A Co_3O_4 -CDots- C_3N_4 Three Component Electrocatalyst Design Concept for Efficient and Tunable CO_2 Reduction to Syngas. *Nat. Commun.* **2017**, *8*, 1828.

(29) Tao, L.; Sun, M.; Zhou, Y.; Luo, M.; Lv, F.; Li, M.; Zhang, Q.; Gu, L.; Huang, B.; Guo, S. A General Synthetic Method for High-Entropy Alloy Subnanometer Ribbons. *J. Am. Chem. Soc.* **2022**, *144*, 10582–10590.

(30) Huang, H.; Jia, H.; Liu, Z.; Gao, P.; Zhao, J.; Luo, Z.; Yang, J.; Zeng, J. Understanding of Strain Effects in the Electrochemical Reduction of CO₂: Using Pd Nanostructures as an Ideal Platform. *Angew. Chem., Int. Ed.* **2017**, *56*, 3594–3598.

(31) Luo, M.; Guo, S. Strain-Controlled Electrocatalysis on Multimetallic Nanomaterials. *Nat. Rev. Mater.* **2017**, *2*, 17059.

(32) Wang, H.; Jiao, L.; Zheng, L.; Fang, Q.; Qin, Y.; Luo, X.; Wei, X.; Hu, L.; Gu, W.; Wen, J.; Zhu, C. PdBi Single-Atom Alloy Aerogels for Efficient Ethanol Oxidation. *Adv. Funct. Mater.* **2021**, *31*, 2103465.

(33) Zhang, S.; Liu, K.; Liu, Z.; Liu, M.; Zhang, Z.; Qiao, Z.; Ming, L.; Gao, C. Highly Strained Au-Ag-Pd Alloy Nanowires for Boosted Electrooxidation of Biomass-Derived Alcohols. *Nano Lett.* **2021**, *21*, 1074–1082.

(34) Wang, Z.; Chen, L.; Xu, S.; Zhang, D.; Zhou, X.; Wu, X.; Xie, X.; Qiu, X. Cobalt Vanadium Layered Double Hydroxide/FeOOH Heterostructure Catalyst with Strong Electron Interactions for Stable Oxygen Evolution Performance. *Compos. Commun.* **2021**, *27*, 100780. (35) Yang, D.; Zhu, Q.; Sun, X.; Chen, C.; Guo, W.; Yang, G.; Han, B. Electrosynthesis of a Defective Indium Selenide with 3D Structure on a Substrate for Tunable CO₂ Electroreduction to Syngas. Angew. Chem., Int. Ed. **2020**, 59, 2354–2359.

(36) Ross, M. B.; Dinh, C. T.; Li, Y.; Kim, D.; De Luna, P.; Sargent, E. H.; Yang, P. Tunable Cu Enrichment Enables Designer Syngas Electrosynthesis from CO₂. J. Am. Chem. Soc. 2017, 139, 9359–9363.
(37) Zhang, J.; Yin, R.; Shao, Q.; Zhu, T.; Huang, X. Oxygen Vacancies in Amorphous InO_x Nanoribbons Enhance CO₂ Adsorption and Activation for CO₂ Electroreduction. Angew. Chem., Int. Ed. 2019, 58, 5609–5613.

Recommended by ACS

Methanol Synthesis Over PdIn, In₂O₃, and CuZn From First-Principles Microkinetics: Similarities and Differences

Minttu Kauppinen, Henrik Grönbeck, *et al.* SEPTEMBER 01, 2022 THE JOURNAL OF PHYSICAL CHEMISTRY C

READ 🗹

Atomically Reconstructed Palladium Metallene by Intercalation-Induced Lattice Expansion and Amorphization for Highly Efficient Electrocatalysis

Minghao Xie, Guihua Yu, *et al.* AUGUST 10, 2022 ACS NANO

READ 🗹

CO₂ Electroreduction on Unsupported PdPt Aerogels: Effects of Alloying and Surface Composition on Product Selectivity

Justus S. Diercks, Thomas J. Schmidt, *et al.* JULY 06, 2022 ACS APPLIED ENERGY MATERIALS

READ 🗹

Interplay between Surface-Adsorbed CO and Bulk Pd Hydride under CO₂-Electroreduction Conditions

Justus S. Diercks, Thomas J. Schmidt, *et al.* AUGUST 17, 2022 ACS CATALYSIS

READ 🗹

Get More Suggestions >