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ABSTRACT: Lithium−sulfur (Li−S) batteries are clean energy
conversion devices with high theoretical energy densities and
specific capacities. However, Li−S batteries exhibit poor cycling
stability during the practical test, mainly because of the detrimental
shuttle effect of intermediate lithium polysulfides (LiPSs). Here,
we report a common and scalable strategy to prepare freestanding
membranes of MnO2 sheet arrays anchored on natural cotton-
derived hollow carbon fibers (MnO2/HCFs), which as interlayers
can mitigate shuttling of LiPSs and thus boost the durabilities of
Li−S batteries. By combining ultraviolet−visible absorption and X-ray photoelectron spectroscopy, we find that a MnO2/HCF
interlayer can trap the LiPSs through chemical interactions between LiPSs and MnO2. With a MnO2/HCF interlayer, the Li−S
battery shows a satisfactory capacity of 970 mA h g−1 at 1 A g−1 with a capacity decay of merely 0.12% per cycle over 500 cycles.
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1. INTRODUCTION

The advancement of electronic and electrical devices has
created a strong driving force for developing high energy
density battery systems. Lithium−sulfur (Li−S) batteries are
the environmentally friendly energy conversion devices with
high theoretical energy density (2600 W h kg−1) and specific
capacity (1675 mA h g−1), possessing great potential for
practical application.1−6 However, the practical application of
Li−S batteries is appreciably limited because of the detrimental
“shuttle effect” due to the dissolution and diffusion of lithium
polysulfides (LiPSs).7−11 Thus, breakthroughs in eliminating
the “shuttle effect” of LiPSs are urgently desired.
To date, various works have been devoted to suppress the

dissolution of LiPSs by optimizing the structure of cathodes
and designing suitable composite materials as hosts for
LiPSs.12−14 Unfortunately, even with sulfur loading in these
host cathodes, the dissolution and diffusion of LiPSs cannot be
effectively hindered, thus resulting in the rapid battery capacity
attenuation. To address this problem, besides designing host
cathodes, employing effective polysulfide barriers as interlayers
between the separator and cathode is a useful means to further
hinder polysulfide shuttling. The interlayers, usually with
porous and freestanding features, can work as second barriers
to efficiently block the migration of LiPSs via physical or
chemical interactions. Compared to other potential materials
used as the interlayers in Li−S batteries, nanostructured
metallic oxides, including TiO2,

15 MnO2,
16 and MoO2,

17 have

recently attracted great attention. Through chemical inter-
action, these oxides can efficiently trap the LiPSs to mitigate
the polysulfide shuttling for promoting the durability of the
Li−S battery. Meanwhile, the nanostructured oxides agglom-
erate easily, which will reduce the utilization of materials.
Moreover, these oxides also have the property of low
conductivity, boosting the internal charge transfer resistance.18

Herein, we demonstrate a facile and scalable process to
prepare a freestanding hybrid membrane of ultrathin MnO2
sheet arrays grown on hollow carbon fibers (HCFs), which as
an interlayer can efficiently restrain the shuttling of LiPSs and
increase the durability of the Li−S battery. The HCF skeleton
can work as the 3D interconnected conductive network for
promoting both electron and ion transport during the charging
and discharging process. Meanwhile, the HCF is derived from
carbonizing natural cotton, which is cost-effective and eco-
friendly. The hollow structure of HCFs enables the ready
access of LiPSs with the well-dispersed MnO2 sheet arrays that
are grown on both the inside and outside wall of HCFs, which
can help to anchor LiPSs and retard polysulfide shuttling by
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chemical interactions. Ultraviolet−visible (UV−vis) absorption
spectroscopy, combined with X-ray photoelectron spectrosco-
py (XPS), provides solid evidence for the effective chemical
absorption between MnO2 and LiPSs. Assembling with this
ingenious MnO2/HCF interlayer, the Li−S battery shows an
excellent capacity of 970 mA h g−1 at 1 A g−1 with a lower
capacity decay of only 0.12% per cycle over 500 cycles.

2. RESULTS AND DISCUSSION

As illustrated in Figure 1a, the MnO2/HCF membrane was
prepared by modifying MnO2 sheet arrays on HCFs by the one
facile hydrothermal method. HCFs were first prepared by
carbonizing natural cotton fibers at a high temperature
(Figures S1 and S2). As shown in the scanning electron
microscopy (SEM) images (Figure 1b,c), it is demonstrated

Figure 1. (a) Schematic illustration for preparing the MnO2/HCF interlayer. (b−d) SEM images of the MnO2/HCF interlayer. The inset of (b) is
the photograph of the MnO2/HCF membrane.

Figure 2. (a) Schematic of the Li−S battery assembled with a polysulfide-blocking interlayer. (b) Charge/discharge voltage curves of the Li−S
battery without the interlayer and with the HCF or MnO2/HCF interlayer at a current density of 0.1 A g−1. (c) Galvanostatic charge/discharge
profiles of the Li−S battery at 0.1 A g−1. (d) CV profiles and (e) rate performance of the Li−S battery with the MnO2/HCF interlayer. (f) Cycling
test of the Li−S battery with the MnO2/HCF interlayer at 1 A g−1.
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that ultrathin MnO2 sheet arrays are uniformly grown on the
surface of HCFs. Besides, MnO2 sheets can even be grown on
the inner wall of HCFs (Figure 1d). From the transmission
electron microscopy (TEM) images of MnO2/HCF (Figure
S3), it can also be seen that MnO2 sheets are grown on the
HCF fibers. The high-resolution TEM image reveals the (001)
and (110) crystal planes of MnO2 (Figure S3b). The content
of MnO2 in the MnO2/HCF membrane is 7.5% (Figure S4),
obtained from the thermogravimetry (TG) analysis. The areal
loading of MnO2 in the MnO2/HCF membrane is 0.14 μg
mm−2. The resulting MnO2/HCF membrane is freestanding
with a thickness of ∼0.35 mm (inset of Figure 1b), which can
be cut into desirable shapes. According to the X-ray diffraction
pattern (Figure S5), MnO2 of the MnO2/HCF membrane can
be ascribed to δ-MnO2 (JCPDS card no. 80-1098), which
would provide efficient adsorption of LiPS species by chemical
interaction.19 As displayed in Figure S6, after the MnO2/HCF
membrane was immersed into the Li2S4 solution, the solution
began to fade and became almost colorless after 2 h. By
contrast, no noticeable change in color was observed for the
Li2S4 solution with the HCF membrane. These results indicate
the superior adsorbent ability of LiPS species for the MnO2/
HCF membrane. We further conducted the UV−vis
absorption test to investigate the content of LiPS species in
the electrolyte with and without the MnO2/HCF membrane.
In the UV−vis absorption spectra (Figure S7), three peaks at
280, 310, and 422 nm are observed for Li2S4 solution without
the MnO2/HCF membrane, which can be labeled as S8/S6

2−,
S6

2−/S4
2−, and S4

2− species, respectively.20,21 For Li2S4 solution
with the MnO2/HCF membrane, hardly any S4

2− species can
be seen and the concentrations of S8 and S6

2− species are much
lower, which verifies that the MnO2/HCF membrane has
appreciable adsorption of LiPS species.
To further evaluate the effect of blocking polysulfide for

MnO2/HCF interlayers, we conducted the electrochemical
measurement by assembling Li−S batteries with the MnO2/
HCF interlayers. As illustrated in Figure 2a, the MnO2/HCF
interlayers were placed between the separator and the cathode.
As shown in Figure 2b, the charge/discharge profiles of Li−S
batteries show two major plateaus at 2.34 and 2.10 V because

of the conversion of S8 to long-chain LiPSs and to Li2S,
respectively.22,23 Compared with Li−S batteries without the
interlayer or with the HCF, the battery with the MnO2/HCF
interlayer exhibits higher upper-plateau and lower-plateau
discharge capacities. The battery with the MnO2/HCF
interlayer exhibits higher electrochemical performance than
those with HCF interlayers or without interlayers (Figure 2c).
After 30 cycles, the battery with the MnO2/HCF interlayer
retains satisfactory discharge capacity (837 mA h g−1), which is
higher than that with the HCF (649 mA h g−1) or without the
interlayer (406 mA h g−1). Assuredly, the MnO2/HCF
interlayer is beneficial to promote the electrochemical
performance of the Li−S battery, which can restrict the
shuttling of the polysulfides and prevent capacity decay.
As shown in the CV curves of the Li−S battery with MnO2/

HCF (Figure 2d), two reduction peaks correspond to the
reversible transition of S8 into long-chain LiPSs and finally to
Li2S, while the anodic peaks correspond to the conversion
from Li2S to LiPSs and S8.

24−28 Also, these curves are nearly
overlapped after the first cycle, exhibiting good stability and
reversibility of the battery. The rate capability of the Li−S
battery with the MnO2/HCF interlayer was investigated under
different cycling rates from 0.1 to 5 A g−1 (Figure 2e).
Specifically, the Li−S battery with the MnO2/HCF interlayer
exhibits remarkable capacities of 1081, 748, 647, 591, 526, 488,
and 438 mA h g−1 at 0.1, 0.2, 0.5, 1, 2, 3, and 5 A g−1. The
charge/discharge plateaus of voltage curves in galvanostatic
profiles are stable with negligible change from 0.1 to 5 A g−1

(Figure S8). Notably, nearly 70% of the original capacity (753
mA h g−1) was retained when the current density returned to
0.1 A g−1, indicating that the MnO2/HCF interlayer can
effectively prevent capacity decay and promote the durability
of the Li−S battery. According to the long-term cycling test
(Figure 2f), the Li−S battery with MnO2/HCF exhibits lower
capacity decay of 0.12% per cycle. Notably, the battery suffers
from rapid capacity decay in the initial cycles. As reported, part
of sulfur in the cathode will be transformed into LiPSs, which
will cause capacity decay in the initial cycles.29,30 In addition,
the shuttle effect of LiPSs cannot be totally avoided, which
would also cause capacity decay of the batteries. To better

Figure 3. (a) High-resolution Mn 2p spectra of the MnO2/HCF interlayer before and after 100 cycles. (b) High-resolution S 2p spectra of cathode
materials of the battery with and without the MnO2/HCF interlayer after 100 cycles.
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understand the interaction between MnO2 and LixSn species,
we have further conducted XPS for the MnO2/HCF interlayer
before and after 100 cycles in the Li−S battery (Figure 3). As
shown in Figure 3a, in the high-resolution Mn 2p spectra, it is
observed that the intensity of the Mn3+ peak greatly increases
after discharge. Besides, one extra peak located at 640.4 eV is
marked as the XPS peak of Mn2+ reduced from the Mn4+/
Mn3+, which is derived by the oxidation of LixSn species.

31 As
shown in the high-resolution S 2p spectra (Figure 3b), there
are three peaks at 164.0, 162.9, and 160.2 eV in the spectrum
of the Li−S battery without the interlayer. The peak at 164.0
eV is attributed to the S−S bond.31 The presence of LixSn (3 ≤
n ≤ 8) is verified by the strong S 2p3/2 contribution at 162.9
eV, and the XPS peak at 160.2 eV corresponds to the Li−S
bonds of Li2S2 and Li2S deposited in the sulfur cathode.32,33 In
the high-resolution S 2p spectrum of the Li−S battery with the
MnO2/HCF interlayer, a strong peak at 167.2 eV can be
ascribed to the central SO bond of thiosulfate captured by
the surface redox reaction between LixSn (3 ≤ n ≤ 8) and δ-
MnO2, along with its peripheral S peak at 161.5 eV.34 The new
peak at 165.0 eV is attributed to S8 species.

35,36 As reported,
the longer-chain polysulfide can react with thiosulfate species
to generate shorter polysulfide and polythionate complexes
(Figure S9).19 The strong peak at 168.2 eV can be attributed
to the polythionate complex of MnO2−LixSn (3 ≤ n ≤ 8).
These results, taken together, verify the chemical interaction
between δ-MnO2 and polysulfides, which will be beneficial for
inhibiting diffusion of LixSn and rapid capacity decay.
We have carried out the postmortem morphological analysis

of HCF and MnO2/HCF interlayers of the Li−S battery after
long-term cycling to further investigate their structural stability.
As shown in the SEM images of the HCF, it is observed that
the sulfurs and polysulfides aggregate unevenly onto the HCF
membranes after the long-term cycling process. In sharp
contrast, the sulfurs and polysulfides are uniformly deposited
onto the surfaces of MnO2/HCF hybrid fibers. Also, the
nanostructures of the MnO2/HCF interlayer are well
maintained after long-term cycling tests (Figures 4b and
S10). Moreover, as shown in Figure 4c, Mn, O, and S elements
are homogeneously distributed onto the hybrid fibers of the
MnO2/HCF interlayer, which verifies that sulfurs and
polysulfides can be captured by the MnO2/HCF interlayer
during the charge/discharge process. In conjunction with
electrochemical results and XPS studies, the enhanced cycling
stability with the MnO2/HCF interlayer is due to effectively

capturing polysulfides by δ-MnO2 and restricting the shuttling
of polysulfides by the MnO2/HCF hybrid interlayer.

3. CONCLUSIONS
In summary, we demonstrate a facile and scalable strategy to
obtain MnO2/HCF membranes with MnO2 sheet arrays grown
on natural cotton-derived HCFs. The hollow structure of
HCFs can facilitate the access of LiPSs with the MnO2 sheet
arrays that are grown on both the inside and outside wall of
HCFs. The strong chemical interactions formed between
MnO2 and LiPSs can helpfully mitigate the shuttling of LiPSs,
as verified by the UV−vis and XPS measurements. Assembling
with the well-designed MnO2/HCF interlayer, the Li−S
battery shows excellent capacity at high current density and
exhibits satisfactory cycling stability with a capacity decay of
merely 0.12% per cycle during the cyclic test.

4. EXPERIMENTAL SECTION
4.1. Materials. Cotton papers were purchased from Shenzhen

PurCotton Technology. The carbon black and sulfur were bought
from Alfa Aesar. KMnO4 was purchased from Sinopharm Chemical
Reagents. Poly(vinylidene fluoride) was obtained from Sigma-Aldrich.
The electrolyte was purchased from Xiaoyuan Energy Technology. All
reagents were used without further purification.

4.2. Synthesis of HCF and MnO2/HCF Interlayers. HCF
membranes were prepared by pyrolyzing cotton membranes at 900 °C
for 2 h under an Ar atmosphere in a tube furnace. Afterward, ultrathin
MnO2 sheet arrays were grown on the HCF via a facile solvothermal
method. Then, 70 mL of KMnO4 solution (0.8 mmol L−1) was slowly
added to deionized water (700 mL) under stirring. The HCF
membranes were immersed into the solution in a watch glass. After
heat treatment at 80 °C for 10 h, the MnO2/HCF membranes were
obtained after washing with deionized water and drying in a vacuum
oven at 60 °C for 12 h.
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