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ABSTRACT: Owing to the development of microelectronics,
demands for excellent thermal dissipation materials have
substantially increased. Learning from natural nacre, thermally
conductive epoxy nanocomposites were prepared based on
asymmetrically polydopamine-functionalized Janus graphene
oxide (JPGO) scaffolds. The required highly oriented JPGO
scaffolds were prepared via the bidirectional freeze-casting method.
With the addition of epoxy resin, the resulting nanocomposite
reveals anisotropic thermal properties. With the total content of the
JPGO scaffold being 0.93 wt %, almost 35 times enhancement of
in-plane thermal conductivity (perpendicular to the lamellar
structure) (∼5.6 W m−1 K−1) has been obtained. The single-side-functionalized JPGO scaffolds play an important role in forming
thermal conductive networks for the epoxy nanocomposites. Importantly, the nanocomposites present electrically insulating
properties (>1014 Ω cm). Such high-performance nanocomposites have promising applications for thermal management in electronic
devices.
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■ INTRODUCTION

Over the past decade, with the development of high speed and
power portable electronic devices, thermally conductive but
electrically insulating thermal management materials (TMMs)
have been in high demand.1−4 Polymers are electrically
insulating and have been used as TMMs. However, many
polymers show low thermal conductivity (0.1−0.5 W m−1

K−1), which hinders their application in the electronic field.5,6

A variety of nanofillers, including metal oxides and metal
nitride have been employed to composite with polymers to
improve the heat conductivity performance.7−10 Nevertheless,
nanocomposites with desired heat-conducting properties are
usually obtained with high filler content (>50%), affecting
light-weight, mechanical, or processing properties of a polymer
matrix.11,12

Because interfacial thermal resistance is the key factor
decreasing the thermal transfer efficiency, intimate interfaces
and structures with well-designed orientation are effective
approaches to increase thermal conductivity, as it is dependent
on effective phonon transfer. The network of continuous
interconnecting fillers can afford heat transport, which
dramatically reduces the interfacial thermal resistance between
a matrix and fillers.13−15 For instance, Tian et al. developed a
foam-templated method to design thermal conductive epoxy
composites with interconnected boron nitride networks.16

Jiang et al. fabricated a network of boron nitride nanosheets

(BNNSs) via the self-assembly of BNNSs on cellulose and
further with the addition of epoxy. With 9.6 vol % BNNS, high
thermal conductivity (∼3.1 W m−1 K−1) of the epoxy
composite was achieved.17 Wu et al. prepared a highly
thermally conductive CNF/f-BNNS film with an oriented
structure by vacuum-assisted filtration.18 Chen et al. prepared
thermally conductive PVDF/BNNS composites (16.3 W m−1

K−1) by the electrospinning process.15 The oriented BNNS
network offers a thermal conduction pathway.
In recent years, carbon materials, such as carbon nanotubes,

graphene, and its derivatives, have been used to composite
with polymers due to their excellent properties (thermal
conductivities in the range of ∼2000−5000 W m−1 k−1).19−21

Freeze-casting is considered as one of the suitable candidates
for preparation of carbon-based materials with layer
architecture, such as artificial nacre, polymer foams, and
graphene aerogels.22−24 However, carbon-based fillers always
decrease the electrical insulation of polymers. To improve the
thermal conductivities of polymers while maintaining excellent
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insulation, various techniques have been developed to solve the
crucial issue, such as the tailored distribution of the filler
network and surface modification of carbon materials with
insulating nanoparticles or nanolayers. To our knowledge,
polydopamine (PDA) is a bioinspired material from the mussel
adhesive proteins, which provides a way to the modification of
various substances.25 In our previous work, epoxy composites
were fabricated with addition of PDA-coated CuNWs (copper
nanowires). The PDA enhances the electric insulation
properties of CuNWs. The epoxy nanocomposites own high
thermally conductive and electrically insulating properties.26

Herein, the epoxy nanocomposites with a nacre-mimetic
conductive pathway were prepared through a freeze-casting
method. As shown in Figure 1, the asymmetrically polydop-
amine-functionalized Janus graphene oxide (JPGO) was
assembled into a scaffold with a well-aligned structure,
followed by addition of epoxy. JPGO scaffolds form a thermal
transport channel in epoxy composites and gain high thermal
conductivity at a relatively low JPGO loading. What is more,
due to the polydopamine coating, the resulting nanocomposite
exhibits significant potential applications for TMMs.

■ EXPERIMENTAL SECTION
Materials. Dopamine (98%) and tris(hydroxymethyl)-

aminomethane were supplied by Aladdin. The epoxy resin from
Formosa Plastics Corporation was used with the curing agent of
methylcyclohexene-1,2-dicarboxylic anhydride (Aladdin).

Preparation of Graphene Oxide (GO). GO was prepared using
the modified Hummers method (detailed preparation is shown in the
Supporting Information).27

Preparation of Polydopamine-Coated GO (PGO). GO
dispersion (20 mL, 5 mg mL−1), dopamine (50 mg), and Tris buffer
(200 mL, pH 8.5) were mixed and kept at 60 °C for 24 h. The
mixture was filtered with 0.2 μm pore size filters

Preparation of Janus PGO (JPGO). Saturated sodium chloride
solution (7.5 mL) and GO dispersion (100 mL, 1 mg mL−1) were
mixed together. Then, 10 g of wax was added and placed in a 80 °C
oil bath until the wax melted, followed by emulsification with a shear
emulsifier (4000 rpm). The mixture was cooled to 25 °C to form GO-
covered wax spheres. The wax spheres and dopamine (0.05 g) were
added into water (pH 8.5). They were allowed to react for 24 h. Janus
PGO was isolated by filtration and washed with hexane to dissolve the
wax. Janus PGO nanosheets were filtered followed by vacuum drying.

Fabrication of JPGO Lamellar Scaffolds. The JPGO lamellar
scaffolds were created by the modified bidirectional freeze-casting of
JPGO dispersion (10 mg mL−1), and different freezing rates were
achieved by adjusting the amount of liquid nitrogen, obtaining
average freezing rates of 5, 10, and 20 μm s−1. After solidification and
freeze-drying in a vacuum freeze-dryer for 2 days, JPGO lamellar
scaffolds were obtained.

Fabrication of Inverse Artificial Nacre Nanocomposites. The
inverse artificial nacres were produced by infiltrating epoxy into JPGO
lamellar scaffolds, followed by curing. The resultant E-JPGO
nanocomposites were composed of about 0.77, 0.84, and 0.93 wt %
JPGO. For comparison, pure epoxy, epoxy/GO (E-GO), and epoxy/
PGO was also prepared using the same procedure.

Figure 1. Schematic illustration of fabrication of (a) JPGO and (b) E-JPGO nanocomposites.

Figure 2. SEM of pure wax (a), and the stability of wax microspheres by GO (b, c) showing the wrinkled surface morphology.
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Characterization. Scanning electron microscopy (SEM) inves-
tigation was conducted on a Hitachi S-4800 microscope. Fourier
transform infrared (FTIR) spectra were recorded on a Nicolet 6700
spectrometer. Atomic force microscopy (AFM) was carried on
Multimode 8 (Bruker) to measure the thickness of GO. The
Derjaguin−Müller−Toporov (DMT) modulus images were recorded
with an atomic force microscope operating in mapping mode. The
thermal stability was measured by a PerkinElmer thermoanalyzer
under a N2 atmosphere. The thermal conductivity of the samples was
tested by the laser flash technique (LFA 467 Hyper Flash, Netzsch).
Volume resistivities were obtained on a ZC36 high resistance meter.

■ RESULTS AND DISCUSSION
Pickering emulsions were currently used to prepare Janus
GO.28 The wax phase was distributed on the water phase.
During emulsification, amphiphilic GO was used to stabilize
the emulsions. The wax microspheres were covered by
wrinkled GO nanosheets (Figure 2). The wax microspheres
were added into deionized water; the exposed faces of
nanosheets were coated with PDA (Figure 1a).
FTIR spectra were used to detect the functional groups of

GO, PGO, JPGO, and PDA. As reported in Figure 3a, the
peaks of GO at 1725, 1620, and 1045 cm−1 are attributed to
the CO, CC, and C−O stretching vibrations, respec-
tively.29 PDA has a broad peak at around 3400 cm−1, which is
ascribed to the aromatic −NH and −OH stretching vibrations.
For PGO, the CO stretching vibration weakens due to the
GO reduction during the polymerization of PDA. A peak of

PDA at 1586 cm−1 (N−H) is observed. No substantial
differences are observed between PGO and JPGO. The
structural changes in GO, PGO, and JPGO are characterized
by Raman spectroscopy in Figure 3b. The peaks of D and G at
∼1370 and 1619 cm−1, corresponding to the structural
disorder and the graphitized structure, are observed.30 It is
interesting to note that the ID/IG ratio decreases upon the
conversion of GO (0.833) to JPGO (0.711), suggesting a slight
reduction of GO during the polymerization of PDA.31

Typically, a higher intensity ratio (ID/IG) implies a larger
defects level.32 The ratio of PGO (0.929) is higher than GO,
indicating increased defects and disorder structure due to the
covalent PDA on the two surfaces of GO. The thermal
properties of GO, PGO, and JPGO were further investigated
(Figure 3c). GO exhibits a two-step degradation stage under
the protection of nitrogen. The first degradation step (50−130
°C) was due to the volatilization of water. The second step of
degradation (130−290 °C) relates to the oxygen-containing
groups.33 PGO and JPGO are more thermally stable than GO.
The AFM images of GO, PGO, and JPGO nanosheets are

shown in Figure 4. To determine the thickness of the GO
nanosheet, three different sections were chosen for the
measurement. The thickness of the GO monolayer is
calculated to be ∼1.07 nm. Raman spectroscopy was further
used to identify the layers of GO (see Figure S1). In
comparison with PGO (1.65), the thickness of JPGO is merely
1.47 nm because only one side of GO is available for coating.

Figure 3. (a) FTIR spectra, (b) Raman spectra, and (c) thermogravimetric analysis (TGA) curves of GO, PGO, JPGO, and PDA.

Figure 4. AFM topographic images of (a) GO, (b) JPGO, and (c) PGO, and corresponding height profiles.
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The DMT modulus images were recorded to observe the two
faces of JPGO. As shown in Figure 5a, the light domains
correspond to the high stiffness and modulus of GO.34 PGO
shows a lower modulus than GO (Figure 5c). For JPGO, two
moduli were clearly detected (Figure 5b). The low modulus
domains correspond to the PDA side. The high modulus
domains correspond to the GO side. The DMT modulus result
indicated that JPGO nanosheets were successfully prepared by
the Pickering emulsion template.
The suspension of nanosheets was assembled into scaffolds

through the freeze-casting method with ice as a template. The
resultant JPGO scaffolds assembled with different freezing
rates of v1 ≈ 5 μm s−1, v2 ≈ 10 μm s−1, and v3 ≈ 20 μm s−1

were named as JPGO-I, JPGO-II, and JPGO-III (Figure 6a1−
c1), respectively. At a low freezing rate, the obtained JPGO-I
scaffold shows a lamellar channel structure with a space of ∼50
μm. The PGO or GO scaffold shows the same directional
structure (Figure S2). Different-view morphologies of JPGO
scaffolds are shown in Figure S3. The space between two
adjacent sheets decreases with increasing the cooling rate.
When the freezing rate was increased to v3 ∼ 20 μm s−1, the
space between two adjacent layered walls of the JPGO-III
scaffold becomes thinner (∼20 μm) due to the decreasing size
of ice crystals. The ice crystals endow the scaffold with aligned
channels, which facilitates the penetration of liquid flow.

JPGO-III was further infiltrated by epoxy to obtain the E-
JPGO nanocomposite (Figure 6a2−c2).
For comparison, the intrinsic thermal conductivity of pure

epoxy was characterized. The thermal conductivity of epoxy is
only 0.16 W m−1 K−1. The thermal conductivity enhancement
efficiency (TCE) of the filler is evaluated as

K K

K
TCE c p

p
=

−

(1)

where κc and κp are the thermal conductivities of nano-
composites and epoxy resin. As shown in Figure 7a, after
introduction of a random three-dimensional (3D) PGO
scaffold, the thermal conductivity expectedly reaches 0.81 W
m−1 K−1 at 1 wt % PGO content, corresponding to 406% TCE
compared with neat epoxy resin. For epoxy/random PGO (E-
r-PGO) nanocomposites, the slightly high thermal conductivity
mainly profits from the PGO random networks. By contrast, E-
PGO shows higher thermal conductivity. The in-plane κ//
(along the ice crystal growth orientation) reaches ∼1.6 W m−1

K−1, corresponding to 900% TCE compared with epoxy resin.
The oriented PGO sheets connect with each other and form
pathways, which decreases the thermal resistance and
promotes the transmission of phonons. Compared with the
E-oriented PGO (E-PGO) nanocomposite, the κ// of E-JPGO-
I increases to 2.8 W m−1 K−1 and achieves 1650% TCE

Figure 5. DMT modulus images of (a) GO, (b) JPGO, and (c) PGO.

Figure 6. (a1−c1) Cross section images of JPGO scaffolds. (a2−c2) Cross section images of nacre-like E-JPGO-I, E-JPGO-II, and E-JPGO-III
nanocomposites.
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compared with epoxy resin. The enhanced thermal conductive
properties indicate that more thermal transfer pathways are
formed. PGO owns a PDA coating on the two faces of
nanosheets. Excessive PDA on the surface could induce heat
flow blockage at the interface. In contrast, JPGO only has a
PDA coating on the one face of nanosheets. The GO faces of
JPGO in contact with each other decrease the interface
thermal resistance. The JPGO scaffold structure ensures that
phonons transport efficiently through GO/GO interfaces,
leading to high thermal conductive properties.
By increasing the freezing rates from 5 to 20 μm s−1, the

layer density increases. E-JPGO-III with a higher layer density
shows higher thermal conductivity than E-JPGO-I and E-
JPGO-II. Quantitatively, the thermal conductivity of E-JPGO-
II and E-JPGO-III was measured as 4.0, and 5.6 W m−1 K−1,
respectively. It is obvious that the interconnected JPGO
nanosheets can form more heat conductive pathways with low
GO/GO interfacial thermal resistance, where phonons can
transfer along the JPGO scaffolds. E-JPGO nanocomposites
also exhibit anisotropic thermal conduction, with through-
plane (κ⊥) thermal conductivities of 0.28, 0.32, and 0.35 W
m−1 K−1, respectively. The anisotropy (κ///κ⊥) of E-JPGO
nanocomposites can reach up to 16 (as shown in Figure 7b).
To further demonstrate the potential application as TMMs, the
heat absorption and dissipation capacities of E-JPGO nano-
composites were recorded. The nanocomposites were first
placed on a heating plate at 80 °C. The temperature of E-
JPGO nanocomposites exhibits a rapid increase than that of
pure epoxy (Figure 7c). On the other hand, the samples were
heated to 80 °C and then transferred to a steel plate (25 °C).
E-JPGO nanocomposites cooled much faster than the epoxy
resin (Figure 7d). These results confirm the excellent heat
transfer capability of E-JPGO nanocomposites.
To demonstrate the excellence of E-JPGO nanocomposites

in the thermal conductivity enhancement efficiency of polymer

composites, we summarize the literature-reported thermal
conductivity enhancement of polymer composites (as shown in
Figure 8): E-BNNS,24 E-PDA/CuNWs,26 E-GO,35 E-CEG,36

E-Graphene,37 E-BNNSs/BNMSs,37 E-hBN/GDE,38 E-
MXene/Ag,39 PDA-rGO,40 E-VA/SiC,41 E-Cu,42 rGO-PI/
BNNS-PI,43 E-GNP/Al2O3,

44 PDMS/BNNSs,45 PMMA/
hBN,46 and PCL/oxi-BNNs.47 We can find that the TCE at
low weight obtained in our work is the highest among these
studies.
The thermal conductivity of E-JPGO-III with heating and

cooling cycles was investigated. Obviously, the k// of E-JPGO-
III shows high stability after 10 cycles (Figure 9a). As shown in
Figure 9b, the electrical resistivity of epoxy is 1.91 × 1013 Ω
cm. Obviously, the introduction of the GO scaffold decreases
the volume resistivity by 7 orders of magnitude because of the

Figure 7. (a) In-plane and (b) through-plane thermal conductivity and anisotropic thermal conductivity of epoxy, E-r-PGO, E-PGO, and E-JPGO
nanocomposites. (c and d) Temperature of E-JPGO nanocomposites.

Figure 8. Comparison of the TCE between E-JPGO nanocomposites
and the previously reported polymer composites.
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electrically conductive path of GO sheets. However, the
volume resistivities of E-PGO and E-JPGO reach 1.01 × 1014

and 5.60 × 1013 Ω cm, respectively. The PDA coating could
effectively suppress the electron transport between GO sheets,
thus endowing electrical insulation of nanocomposites, while
the heat transfer properties of GO were preserved (Figure 9c).
What is more, the volume resistivity of E-JPGO-III reaches
9.04 × 1014 Ω cm, which is far beyond the required resistance
for electrical insulation (1.0 × 109 Ω cm). The mechanical
properties of E-JPGO are shown in Figure 9d. Perpendicular to
the lamellar direction, the tensile strength (91.1 MPa) of E-
JPGO-III is higher than that of pure epoxy (84.4 MPa). The
enhancement of mechanical properties is mainly due to the
interaction between JPGO and epoxy.

■ CONCLUSIONS

In summary, learning from nacre, we fabricated inverse
artificial nacre E-JPGO nanocomposites by the bidirectional
freeze-casting technique. The nanocomposites exhibit high-
performance thermal conductive properties with JPGO
scaffolds. Perpendicular to the lamellar structure, the thermal
conductivity (in-plane) of the E-JPGO-III nanocomposite is 35
times that of pure epoxy. Furthermore, E-JPGO nano-
composites reveal excellent thermal stability and can be
qualified for long-term high-temperature heat conduction
applications. In addition, the nanocomposites present electrical
insulating properties with a volume resistance beyond 1014 Ω
cm due to the PDA coating on the GO surface and thus have
potential applications in thermal management where graphene
or metal is inapplicable.
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