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Abstract
The broad application of metal-air batteries and fuel cells have been greatly limited due to their
slow kinetics of oxygen electrodes involving the oxygen reduction reaction (ORR), and
therefore the development of high-efficient, low-cost and high-reserve ORR electrocatalysts is
of great significance. Herein, a hypersaline-protected pyrolysis strategy is presented for
preparing 3D honeycombed cobalt, nitrogen co-doped carbon nanosheets (Co/N-CNS) by using
eco-friendly biomass as a carbon and nitrogen source. During the hypersaline-protected
pyrolysis, the pyridinic nitrogen-rich biomass facilitates the formation of highly active Co/N
active sites among the resultant Co/N-CNS, while the templating-washing-drying cyclic
utilization of salts creates honeycombed pore structures among the Co/N-CNS. Due to the
structural features of honeycombed pores and uniform distributed active sites, the Co/N-CNS
catalyst offers excellent ORR activity, high durability and methanol-tolerant performance in an
alkaline electrolyte. As a demonstration, a primary Zn-air battery using the Co/N-CNS cathode
delivers a high power density and excellent operating stability beyond that of commercial Pt/C
cathode.

Supplementary material for this article is available online

Keywords: hypersaline-protected pyrolysis, honeycombed carbon nanosheets, cobalt and
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1. Introduction

Metal-air batteries and fuel cells have been broadly developed
in recent years due to their high energy conversion efficiency,

4 Y.Z. and S.C. contributed equally to this work.

environmentally benign nature and safety in operation [1–5].
The slow kinetics of cathodic oxygen reduction reaction
(ORR) in the oxygen electrodes is a rate-determining step
limiting their large-scale applications [6]. Precious metal-
free ORR catalysts are attracting broad attention due to
their low prices, rich reserves, strong anti-poisoning ability
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and long cycling stability, when compared with commercial
Pt/C catalyst. Among them, nitrogen-doped (N-doped) carbon
with the low-cost, highly active and durable features has
shown great potentials substituting to commercial Pt/C cata-
lyst [7–10]. Recently, a variety of eco-friendly and low-cost
biomass is widely used for the preparation of N-doped carbon
[11, 12]. However, there are great challenges in the direct pyro-
lysis of biomasses into N-doped carbon due to severe losses of
nitrogen components, low carbonization yields and low poros-
ities of products.

Simultaneous doping of transition metals (Co, Fe, Ni, Mn,
etc) into N-doped carbon usually possesses greatly enhanced
ORR performance far beyond N-doped carbon [2, 13–16].
The utilization of carbon- and nitrogen-containing precurs-
ors are often concerned for pyrolysis preparation of trans-
ition metal/nitrogen co-doped carbon [17–20]. However, the
simple pyrolysis of carbon, nitrogen and transition metal-
containing precursors usually produces the co-doped carbon
with low specific surface area, unsatisfying porosity and inad-
equate exposure of active sites [21]. The introduction of a
hierarchically porous structure into doped carbon materials
can well solve these problems by increasing exposed active
sites and accelerating ion/electron/oxygen transferring during
subsequent ORR processes [22–25]. So far, hard- and soft-
templating methods have been widely used to create pore
structures among the pyrolyzed carbon, however, these tem-
plating methods are greatly limited due to the uses of complex
operation process, toxic reagents and highly expensive tem-
plates [26, 27]. Therefore, there are great challenges for devel-
oping hierarchically porous doped carbon in a simple, effective
and environmental-friendly way.

Herein, a hypersaline-protected pyrolysis strategy is
presented for the synthesis of cobalt, nitrogen co-doped carbon
nanosheets (Co/N-CNS). During the hypersaline-protected
pyrolysis, the Co/N-CNS with honeycombed pore structure
is generated due to templating-washing-drying cyclic utiliz-
ation of NaCl salts, while an eco-friendly biomass vitamin
B2 (VB2) is used as a carbon and nitrogen source. Due to
unique structural features of honeycombed porosity and uni-
formly distributed active sites, the Co/N-CNS catalyst with
high electron/ion/oxygen transports delivers high ORR cata-
lytic activity and excellent cycling/methanol-tolerant stability.
As a demonstration, as-assembled Zn-air battery using the
Co/N-CNS cathode displays high power density and excellent
operating stability, demonstrating its great potential to replace
commercial Pt/C cathode in the practical applications.

2. Experimental details

2.1. Preparation of the Co/N-CNS

Typically, 1 g of VB2 was dissolved in 20 ml of
aqueous solution containing designed amounts of NaCl and
Co(OAc)2·4H2O. Upon lyophilization, the power mixture
was pyrolyzed at 800 ◦C with a heating rate of 5 ◦C min−1

under a nitrogen flow, washed with 1 M HCl and water, and
then dried in vacuum at 60 ◦C overnight. The Co/N-CNS-
0, Co/N-CNS-1 and Co/N-CNS-2 represent the products

obtained with NaCl/VB2 mass ratio of 0, 3 and 6, respect-
ively, keeping VB2/Co(OAc)2 mass ratio of 20. The Co/N-
CNS-2(Co1) and Co/N-CNS-2(Co3) represent the products
with VB2/Co(OAc)2 mass ratio of 40 and 10, respectively,
with other pyrolysis conditions similar with that of Co/N-
CNS-2. Pyrolysis temperature T was tailored at 700 ◦C and
900 ◦C, respectively, and the products were denoted as the
Co/N-CNS-2(T), with other pyrolysis condition similar with
that of Co/N-CNS-2.

2.2. Preparation of the Co/N-C and N-CNS

The Co/N-C was prepared by direct pyrolysis of grinded mix-
ture of NaCl, VB2 and Co(OAc)2·4H2O, with other pyrolysis
condition similar with that of Co/N-CNS-2. The N-CNS was
prepared without the addition of Co(OAc)2·4H2O, with other
pyrolysis condition similar with that of Co/N-CNS-2.

3. Result and discussion

Figure 1 demonstrates the hypersaline-protected pyrolysis
procedures for the preparation of the Co/N-CNS. First, the
VB2 and Co(OAc)2·4H2O were fully dissolved in saturated
NaCl solution, which was then lyophilized into a powder
mixture. Second, the powder mixture was pyrolyzed in a
nitrogen flow, then washed with 1 M HCl and water, and
dried at 80 ◦C in vacuum, thus to obtain the Co/N-CNS.
The hypersaline-protected pyrolysis strategy facilitates an
intriguing batch production of the honeycombed carbon struc-
tures with templating-washing-drying cyclic reutilization of
NaCl salts. Namely, during the hypersaline-protected pyro-
lysis, NaCl salts act as initial reactants, templates and final by-
products for the formation of the Co/N-CNS. By simply enlar-
ging the use of initial reactants with the same proportion, 20 g
of Co/N-CNS can be one-batch prepared. Biomass VB2 with
abundant pyridinic nitrogen-rich structure, low cost and eco-
friendly property acts as carbon and nitrogen sources during
the hypersaline-protected pyrolysis. Besides, multi-hydroxyl
polysaccharide structure in VB2 facilitates high carbonization
yield, while abundant polar oxygen-containing groups (i.e.
-OH, -CO-NH-) in VB2 show excellent compatibility with
NaCl crystals before subsequent pyrolysis. Notably, biomass
VB2 typically shows a substantially high solubility in satur-
ated NaCl solution while other conventional biomasses always
show a precipitating tendency in concentrated salt solution.

The structural evolution of honeycombed pore structures
among the Co/N-CNS was investigated by varying differ-
ent feeding ratios of NaCl salts. The Co/N-CNS-0 without
the addition of NaCl templates shows a micron-sized irreg-
ular morphology with no obvious pore structures from the
scanning electronic microscopy (SEM) observation (figure
2(a)). The Co/N-CNS-1 with addition of small amounts
of NaCl templates shows morphology of assembled carbon
nanosheets with micron-sized pores (figure 2(b)). The Co/N-
CNS-2 with an increased feeding NaCl ratio shows morpho-
logy of 3D honeycombed network constructed with ultrathin
carbon nanosheets (figure 2(c)). Pyrolysis temperature also
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Figure 1. Schematic illustration of hypersaline-protected pyrolysis
procedures of the Co/N-CNS by templating-washing-drying cyclic
utilization of NaCl salts.

Figure 2. SEM images of (a) Co/N-CNS-0, (b) Co/N-CNS-1, (c)
Co/N-CNS-2. (d, e) TEM and (f) HRTEM images of the
Co/N-CNS-2. (g) Bright-field TEM image of the Co/N-CNS-2 and
corresponding elemental mappings, indicating the uniform
distribution of C, N, Co and O elements in the Co/N-CNS-2.

plays an important role in the formation of the Co/N-CNS
[28].When pyrolysis temperature is 700 ◦C that is belowmelt-
ing point of NaCl, the Co/N-CNS-2(700) shows a morpho-
logy of aggregated fragments (figure S1(a) available online
at (stacks.iop.org/Nano/31/364003/mmedia)), which is due to
the insufficiency of volume exclusion and confinement effect
of NaCl crystals during the pyrolysis. When the pyrolysis tem-
perature is 800 ◦C that is higher than melting point of NaCl,
honeycombed pore structures among the Co/N-CNS are gen-
erated, indicating that molten NaCl is beneficial for the forma-
tion of honeycombed pore structures. When the pyrolysis tem-
perature further increases to 900 ◦C, the Co/N-CNS-2(900)
exhibits morphology of aggregated carbon nanosheets because
excessive temperature for pyrolysis will cause pore structure
collapse of the Co/N-CNS (figure S1(b)).

Transmission electron microscopy (TEM) images further
reveal the honeycombed pore structures among the Co/N-
CNS-2, and the pore sizes are in the range of 50–150 nm (fig-
ures 2(d)–(e)). High-resolution TEM (HRTEM) image shows
that the Co/N-CNS-2 consists of assembled carbon nanosheets
with sub-10-nm graphitic carbon domains (figure 2(f)). The

graphitic carbon domains with a lattice fringe spacing of
0.34 nm clearly indicate a high graphitization degree of Co/N-
CNS-2. In addition, bright-field TEM image and EDS map-
pings (figure 2(g)) imply that the cobalt and nitrogen elements
are uniformly distributed throughout the framework of Co/N-
CNS-2. Control sample of Co/N-C was prepared by direct
pyrolysis of grinded mixture of NaCl, VB2 and cobalt salts.
The Co/N-C shows a morphology of micron-sized segments
(figure S2), indicating that the lyophilizing process is essen-
tial for the construction of uniformly distributed honeycombed
pore structures.

The formation mechanism for honeycombed pore struc-
tures among the Co/N-CNS via hypersaline-protected pyro-
lysis process is explained in the following. During the
hypersaline-protected pyrolysis process, the early-generated
nano-droplets of molten NaCl will serve as a fluid template
[29, 30]. resulting in the formation of 3D interpenetrating pore
structures among the Co/N-CNS-2. Upon cooling, millimeter-
sizedNaCl beads can be observed on the surface of as-obtained
block products (figure S3), and the formation of surface-rich
NaCl beads indicate that molten NaCl indeed flow through
honeycombed pore walls due to unique capillary effect dur-
ing pyrolysis. Therefore, the developed hypersaline-protected
pyrolysis strategy provides a simple and efficient way to pro-
duce unique honeycombed carbon materials.

Figure 3(a) exhibits x-ray photoelectron spectroscopy
(XPS) spectrum of the Co/N-CNS-2, indicating that nitrogen
content in the Co/N-CNS-2 significantly increases to 4.61 at%,
compared with that of Co/N-CNS-0 (3.16 at%), matching
well with the elemental analysis (table S1). The hypersaline-
protected pyrolysis strategy can effectively utilize nitrogen
species within the precursor to obtain high-content N-doping
among the resultant carbon. The unique salt encapsulation
effect of NaCl greatly alleviates substantial losses of nitrogen
species during subsequent pyrolysis, thus realizing the forma-
tion of highly active Co/N and pyridinic-N active sites within
the Co/N-CNS.

XPS survey spectrum in figure S4(a) clearly reveals that
Co/N-CNS-2 is composed of carbon (89.4 at%), nitrogen
(4.6 at%), oxygen (5.4 at%) and cobalt (0.6 at%). The
N 1s XPS spectra of Co/N-CNS-2(700), Co/N-CNS-2 and
Co/N-CNS-2(900) in figure 3(b) indicate that the nitrogen
types among the three samples are pyridinic-N, pyrrolic-
N, graphitic-N and N-O, respectively [31, 32]. High con-
tent of pyridinic-N among the Co/N-CNS-2 clearly indic-
ates that pyridinic N-rich structure among VB2 precursor
plays an important role for the regulation of nitrogen spe-
cies in the Co/N-CNS products. The Co/N-CNS-2 shows
high pyridinic-N content at optimized pyrolysis temperatures,
and the pyridinic-N structure favors the formation of Co/N
coordination sites among the Co/N-CNS products [33–35],
which is critical for boosting ORR catalytic performance [36].
The Co 2p XPS spectrum indicates that there are three peaks at
795.3, 784.7 and 780.3 eV among the of Co/N-CNS-2 (figure
3(c)), which are attributed to Co 2p1/2, Co-Nx and Co 2p3/2,
respectively [37]. The Co-Nx species among the Co/N-CNS-2
clearly suggest the high-efficient ORR catalytic activity [38].
Therefore, the N 1s and Co 2p XPS peaks clearly indicate
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efficient co-doping of cobalt and nitrogen elements into the
Co/N-CNS-2. The peaks in C 1s XPS spectrum of the Co/N-
CNS-2 at 284.5, 285.6, 286.6 and 287.6 eV can be assigned to
the C=C, C-C, C=N and O–C=O, respectively (figure S4(b)).
The C=N species further confirm that the nitrogen elements
are doped into the Co/N-CNS-2, which subsequently improve
ORR catalytic activity with fast charge mobility [39–41].

Defect structures of the Co/N-CNS are investigated by
Raman characterizations [42, 43]. The intensity ratio of D and
G bands (ID/IG) decreases with increased contents of NaCl
template (figure 3(d)), indicating that the addition of NaCl
templates is beneficial for improving graphitization degrees
of the Co/N-CNS products. This result is attributed to an
unique encapsulated effect of molten salts during the pyrolysis
[44]. With increased contents of cobalt salts, the ID/IG ratios
decrease from 1.07 to 0.94 (figure 3(e)), indicating that cobalt
ions enhance the graphitization degrees of the Co/N-CNS, thus
contributing to improving the electrical conductivity. Higher
pyrolysis temperature will create the Co/N-CNS-2 with more
ordered graphitic carbon structures ranging from 700 ◦C to
900 ◦C (figure S5) [45]. Figures S6(a) and (b) show x-ray
diffraction (XRD) patterns of the Co/N-CNS prepared with
different feeding cobalt contents and pyrolysis temperatures,
respectively. The broad XRD patterns centered at 25.9◦ and
44.0◦ correspond to graphitic (002) and (100) lattice planes,
respectively, clearly showing that heteroatom-doping causes
the Co/N-CNS with defect-rich structures [46].

Nitrogen adsorption/desorption measurements indicate
pore characteristics of the Co/N-CNS products. The Co/N-
CNS-2 exhibits simultaneously emerged micropores and
mesopores due to the presence of type-IV isotherm with a
type-H2 hysteretic loop (figure 3(f)) [47]. The specific surface
areas of the Co/N-CNS increase remarkably with increased
contents of NaCl templates (table S2). The Co/N-CNS-0 indic-
ates a low surface area of 15.5 m2 g−1, while the Co/N-CNS-2
exhibits a high surface area of 512.9 m2 g−1, indicating that
NaCl templates facilitate the formation of large-surface-area
pore structures. The mean pore size of the Co/N-CNS-2 is
centered at 3.2 nm performed by density functional theory
(DFT) analysis (figure S7). The volatilization of gases during
pyrolysis can introduce rich mesopores among the Co/N-
CNS. The pore volume of the Co/N-CNS-2 (0.32 ml g−1)
is approximately 15 times larger than that of Co/N-CNS-0
(0.02 ml g−1). Nitrogen adsorption/desorption isotherms of
the Co/N-CNS at different pyrolysis temperatures are also
analyzed. The specific surface areas of the Co/N-CNS-2(700)
and Co/N-CNS-2(900) are 23.1 and 373.1 ml g−1, respect-
ively, indicating that the honeycombed pore structures are not
generated at relatively low pyrolysis temperature, and honey-
combed pore structures will inevitably collapse at relatively
high pyrolysis temperature.

The Co/N-CNS with unique structural features of 3D hon-
eycombed pore structures, uniformly distributed Co/N active
sites and intrinsically high electrical conductivity is prom-
ising to demonstrate excellent ORR catalytic performance
[48–50]. Cyclic voltammetry (CV) curve of the Co/N-CNS-
2 exhibits an obvious reduction peak centered at 0.82 V vs.
RHE in O2-saturated 0.1 M KOH (figure 4(a)), implying that

Figure 3. (a) XPS survey spectra of the Co/N-CNS-0, Co/N-CNS-1
and Co/N-CNS-2. (b) N 1s XPS spectra of the Co/N-CNS-2
prepared at different pyrolysis temperatures. (c) Co 2p XPS spectra
of the Co/N-CNS-2. (d) Raman spectra of the Co/N-CNS-0,
Co/N-CNS-1, Co/N-CNS-2 and Co/N-C. (e) Raman spectra of the
Co/N-CNS-2 prepared with different contents of cobalt salts. (f)
Nitrogen adsorption/desorption isotherms of the Co/N-CNS-0,
Co/N-CNS-1, Co/N-CNS-2, Co/N-CNS-2(700) and
Co/N-CNS-2(900).

the Co/N-CNS-2 shows high ORR catalytic performance. CV
and linear sweep voltammetry (LSV) are also measured to
evaluate their ORR catalytic performance of Co/N-CNS and
Pt/C catalysts (figures 4(b) and S8). The Co/N-CNS-2 cata-
lyst shows excellent ORR performance with prominently pos-
itive onset potential (Eonset, 0.97 V vs. RHE) and high half-
wave potential (E1/2, 0.855 V vs. RHE), compared with that
of Pt/C catalyst (0.98 V and 0.85 V vs. RHE, respectively).
The Co/N-CNS-2 shows a diffusion-limiting current density
of 4.7 mA cm−2, which is very close to commercial Pt/C of
4.9 mA cm−2, suggesting that the Co/N-CNS-2 shows the
potential of substituting to commercial Pt/C. As a contrast, the
Co/N-CNS-0, Co/N-CNS-1 and Co/N-C show inferior ORR
performance compared with that of Co/N-CNS-2. The dual
doping of cobalt and nitrogen endows the as-prepared Co/N-
CNS with more active sites (mainly Co-Nx and pyridinic-N).
On this basis, the Eonset and E1/2 of the Co/N-CNS become
more positive with decreased VB2/Co(OAc)2 ratio from 40 to
20, but decrease with continually decreased VB2/Co(OAc)2
mass ratio to 10 (figures 4(c) and (d)). This is because excess-
ive cobalt ions among the precursor will form large aggreg-
ated cobalt particles during high-temperature pyrolysis, res-
ulting in the damage of porous structures in the Co/N-CNS.
Figure 4(e) exhibits that the Co/N-CNS-2 shows optimized
ORR catalytic performance among the Co/N-CNS. The Co/N-
CNS-2(700) exhibits decreased ORR catalytic activity due to
its insufficient pore structures. Similarly, the collapse of pore
structures of the Co/N-CNS-2(900) leads to decreased ORR
catalytic performance. Low graphitization degree and low con-
ductivity of the Co/N-CNS-2(700) obtained at relatively low
pyrolysis temperature will weaken the ORR performance to a
certain extent, while higher pyrolysis temperature will lead to
large graphitization degree with simultaneous losses of doped
nitrogen contents and catalytically active sites.

ORR kinetics of the Co/N-CNS catalysts are investigated
by calculations of electron transfer number (n) derived from
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Table 1. Comparison of ORR catalytic properties of the
Co/N-CNS-2 with heteroatom-doped carbon hybrid materials in the
literature.

Shifts vs. E of Pt/C [mV]

Samples E1/2 Eonset n References

3D MPC −25 −5 3.81–3.96 [29]
NPMC-1000 0 −5 4.0 [6]
MZ8-S-P −16 5 3.5–3.9 [57]
N-CNS-120 0 30 3.9–4.0 [8]
NWCN-7 −69 −70 3.75–3.90 [59]
CPANI-Fe-
NaCl

−58 −60 3.8–4.0 [30]

Mn-C-NO −50 −50 3.89–4.0 [56]
MnO2/N-
HGS

−10 −20 3.65–3.85 [53]

RGO/P/2Co −25 −16 3.9 [58]
BC −29 50 3.8 [11]
NGRW −15 −20 3.95 [54]
Co-Nx-
OMMC

−10 −20 3.9 [55]

Co/N-CNS-2 5 −10 3.98 This work

the LSV curves at different rotation speeds (figure 4(f)). Insert
of figure 4(f) shows the correspondingKoutechy-Levich (K-L)
plots with perfect linearity and parallelism. The Co/N-CNS-2
catalyst shows calculated n of 3.98 in potential range of oxy-
gen reduction, indicating its almost four-electron charge trans-
fer process, that equals to commercial Pt/C (n = 3.98). Rotat-
ing ring disk electrode (RRDE) measurements are also used
to calculate the n by monitoring the H2O2 yields (figure 4(g)).
As a result, the Co/N-CNS-2 preferably catalyzed the ORR
through a four-electron pathway with the n of 3.93, which
is close to that of Pt/C (3.98). The H2O2 yield of the Co/N-
CNS-2 (8.1%) is also approaching to that of Pt/C (5.2%) over
the potential range from 0–0.8 V vs. RHE. This result clearly
demonstrates the excellent catalytic performance of the Co/N-
CNS-2 towards the ORR. The Co/N-CNS-2 with optimized
ORR catalytic performance comes from unique 3D honey-
combed porous structures with uniform distributions of highly
active Co/Nx active sites among carbon skeletons [51, 52].
More importantly, the ORR catalytic properties of the Co/N-
CNS-2 exceed most heteroatom-doped carbon catalysts repor-
ted in the literature (table 1) [6, 8, 11, 29, 30, 53–59].

Cycling performance and methanol-tolerant durability of
the Co/N-CNS-2 and Pt/C catalysts in 0.1 M KOH are com-
pared by conducting chronoamperometry measurements to
address their practical applications. High retention of the
Co/N-CNS-2 (92%) after continuous testing at 20 000 s indic-
ates its excellent cycling stability compared with that of Pt/C
(figure 4(h)). The Pt/C catalyst shows dramatically decreased
cathodic current when 1 M methanol is added, whereas the
chronoamperometry curve of the Co/N-CNS-2 almost does
not decay under the same condition (figure 4(i)), indicating
that the Co/N-CNS-2 shows almost no methanol crossover
effect. These results clearly show that the Co/N-CNS-2 cata-
lyst exhibits excellent ORR catalytic activity and cycling sta-
bility, superior to commercial Pt/C.

Figure 4. (a) CV curves of the Co/N-CNS-2 in N2- and
O2-saturated 0.1 M KOH, respectively. (b) LSV curves of the
Co/N-CNS-0, Co/N-CNS-1, Co/N-CNS-2, Co/N-C and Pt/C. (c)
CV and (d) LSV curves of the Co/N-CNS-2(Co1), Co/N-CNS-2,
Co/N-CNS-2(Co3), N-CNS. (e) LSV curves of the
Co/N-CNS-2(700), Co/N-CNS-2, Co/N-CNS-2(900). (f) LSV
curves of the Co/N-CNS-2 at various rotating speeds. Inset of (f) is
K-L plots of the Co/N-CNS-2 at various potentials. (g) H2O2 yield
and n of the Co/N-CNS-2 and Pt/C from the RRDE curve in
O2-saturated 0.1 M KOH, 1600 rpm. (h) Chronoamperometric
responses of the Co/N-CNS-2 and Pt/C in O2-saturated 0.1 M KOH.
(i) Chronoamperometric responses of the Co/N-CNS-2 and Pt/C
upon addition of 1 M methanol.

A primary Zn-air battery is assembled using carbon cloth-
loaded Co/N-CNS-2, Zn plate and Celgard 2332 membrane as
cathode, anode and separator, respectively, to further demon-
strate the practical applications of the Co/N-CNS-2 catalyst.
The electrolyte is a 6 M KOH solution containing 0.2 M zinc
acetate. Figure 5(a) indicates that the Co/N-CNS-2-based Zn-
air battery works smoothly with an open-circuit potential of
1.54 V, which is higher than that of Pt/C-based Zn-air bat-
tery battery (1.49 V). The power densities of Zn-air battery are
calculated from the corresponding polarization curves meas-
ured at different discharge current densities (figure 5(b)). The
open circuit voltage of Zn-air battery with the Co/N-CNS-
2 cathode reaches 1.46 V, which is very close to that of
Zn-air battery with Pt/C cathode. The highest power density
for the Zn-air battery with the Co/N-CNS-2 cathode reaches
138 mW cm−2 at the current density of 204 mA cm−2, which
is significantly higher than that of Zn-air battery using the Pt/C
cathode. The results indicate that the Co/N-CNS-2 catalyst is
a very promising alternative to commercial Pt/C as cathode
materials for Zn-air battery, which is ascribing to its superior
electrocatalytic performance and long-term durability for the
ORR. When normalized to the mass of consumed Zn during
the discharge process, the specific capacity of our battery is
up to 745 mA h gZn−1 at the current density of 20 mA cm−2,
which is higher than that of battery using Pt/C cathode (fig-
ure 5(c)). The operating potential of Zn-air battery using the
Co/N-CNS-2 cathode at the current density of 20 mA cm−2

(1.18 V) is similar to that of Zn-air battery using the Pt/C
cathode. Furthermore, compared with Pt/C, a small potential
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Figure 5. (a) Open circuit voltage curves of as-fabricated Zn-air
battery with the Co/N-CNS-2 and Pt/C cathodes, respectively. (b)
Polarization curves and power densities of the Co/N-CNS-2 and
Pt/C cathodes, respectively. (c) Galvanostatic discharge curves of
the Co/N-CNS-2 and Pt/C cathodes at a discharge current density of
20 mA cm−2, respectively. (d) Rate capability of the Co/N-CNS-2
and Pt/C cathodes at different current densities.

drop is observed at the galvanostatic discharge current dens-
ity of 20 mA cm−2, indicating a stable catalytic stability of the
Co/N-CNS-2 catalyst towards theORR. Figure 5(d) shows that
the rate performance of Zn-air battery using the Co/N-CNS-2
cathode is better than that of Zn-air battery using Pt/C cathode.
The exceptional rate capability of the Co/N-CNS-2 cathode is
ascribing to significantly improved electron transport and ion
diffusion pathways among the Co/N-CNS-2.

4. Conclusion

In summary, a hypersaline-protected pyrolysis strategy is
developed for the preparation of cobalt and nitrogen co-
doped carbon nanosheet (Co/N-CNS). The NaCl salts not
only act as a recyclable template boosting the formation of
a 3D honeycombed structure among the Co/N-CNS, but also
act as an encapsulated pyrolysis media for largely improv-
ing the carbonization yield and N-doping efficiency. Due
to 3D honeycombed pore structures with highly efficient
ion/charge/oxygen transports, the Co/N-CNS catalyst exhib-
its a highly active ORR activity (E1/2 at 0.855 V vs. RHE)
and remarkable cycling stability (a retention above 92% after
20 000 s) in 0.1 MKOH electrolyte. As a demonstration, a Zn-
air battery using the Co/N-CNS cathode demonstrates a high
power density of 138 mW cm−2 at 204 mA cm−2, high spe-
cific capacity and operating voltage up to 745 mA h gZn−1

and 1.18 V, respectively, at 20 mA cm−2. Furthermore, the
hypersaline-protected pyrolysis strategy is easily extended
to develop various metal/nitrogen co-doped porous carbon
electrocatalysts with a competitive ORR catalytic perform-
ance towards next-generation ORR-involved energy conver-
sion processes.
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